You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.2 KiB
176 lines
6.2 KiB
import argparse
|
|
import torch
|
|
from torch import nn, optim
|
|
from torchvision import datasets, models, transforms
|
|
from torch.utils.data.dataloader import DataLoader
|
|
import os
|
|
from collections import OrderedDict
|
|
|
|
|
|
# Transforms
|
|
train_transform = transforms.Compose([
|
|
transforms.Resize(255),
|
|
transforms.ColorJitter(brightness=2),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.RandomRotation(30),
|
|
transforms.RandomResizedCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
])
|
|
|
|
valid_transform = transforms.Compose([
|
|
transforms.Resize(255),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
])
|
|
|
|
|
|
def create_arguments(parser):
|
|
parser.add_argument("data_directory", type=str)
|
|
parser.add_argument("--save_dir", type=str, help="Directory to save checkpoints", default=os.getcwd())
|
|
parser.add_argument("--arch", type=str, help="Model's architecture", default="resnet34")
|
|
parser.add_argument("--learning_rate", type=float, help="Model's learning rate", default=0.002)
|
|
parser.add_argument("--hidden_units", type=int, help="Model's number of hidden units", default=128)
|
|
parser.add_argument("--epochs", type=int, default=10)
|
|
parser.add_argument("--gpu", action='store_true')
|
|
|
|
|
|
def check_data(data_directory, save_dir, hidden_units, learning_rate, epochs):
|
|
# Check data
|
|
if not os.path.exists(data_directory):
|
|
raise ValueError("Data directory not exist!")
|
|
if not os.path.exists(save_dir):
|
|
raise ValueError("Checkpoint save directory not exist!")
|
|
if hidden_units <= 0 or learning_rate <= 0 or epochs <= 0:
|
|
raise ValueError()
|
|
|
|
|
|
def create_model(arch, hidden_units, learning_rate):
|
|
model = getattr(models, arch)(pretrained=True)
|
|
optimizer = None
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
if model.__class__.__name__ == "ResNet":
|
|
# ResNet classify layer is fc
|
|
in_features = model.fc.in_features
|
|
|
|
fc = nn.Sequential(OrderedDict([
|
|
("fc1", nn.Linear(in_features, hidden_units)),
|
|
("relu1", nn.ReLU()),
|
|
("fc2", nn.Linear(hidden_units, 102)),
|
|
("output", nn.LogSoftmax(dim=1))
|
|
]))
|
|
|
|
model.fc = fc
|
|
|
|
optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate)
|
|
elif model.__class__.__name__ == "VGG":
|
|
# VGG classify layer is classifer
|
|
# It has 6 mini-layers
|
|
classifier = nn.Sequential(OrderedDict([
|
|
("fc1", nn.Linear(25088, 4096)),
|
|
("relu1", nn.ReLU()),
|
|
("dropout1", nn.Dropout(0.5)),
|
|
("fc2", nn.Linear(4096, hidden_units)),
|
|
("relu2", nn.ReLU()),
|
|
("dropout2", nn.Dropout(0.5)),
|
|
("fc3", nn.Linear(hidden_units, 102)),
|
|
("output", nn.LogSoftmax(dim=1))
|
|
]))
|
|
model.classifier = classifier
|
|
optimizer = optim.SGD(model.classifier.parameters(), lr=learning_rate)
|
|
else:
|
|
raise ValueError("Architecture not support")
|
|
|
|
return model, optimizer
|
|
|
|
|
|
|
|
def training(model, optimizer, criterion, epochs, device, trainloader, validloader):
|
|
train_losses, valid_losses = [], []
|
|
for i in range(epochs):
|
|
print(f"Epoch {i + 1}/{epochs}")
|
|
model.train()
|
|
|
|
train_loss = 0
|
|
valid_loss = 0
|
|
accuracy = 0
|
|
for images, labels in trainloader:
|
|
images, labels = images.to(device), labels.to(device)
|
|
output = model(images)
|
|
|
|
loss = criterion(output, labels)
|
|
train_loss += loss.item()
|
|
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
train_losses.append(train_loss)
|
|
with torch.no_grad():
|
|
model.eval()
|
|
for images, labels in validloader:
|
|
images, labels = images.to(device), labels.to(device)
|
|
output = model(images)
|
|
|
|
loss = criterion(output, labels)
|
|
valid_loss += loss.item()
|
|
|
|
output_p = torch.exp(output)
|
|
_, top_class = output_p.topk(1, dim=1)
|
|
equals = top_class == labels.view(top_class.shape)
|
|
accuracy += torch.mean(equals.type(torch.FloatTensor))
|
|
accuracy = accuracy / len(validloader) * 100
|
|
|
|
print(f"Train loss: {train_loss}")
|
|
print(f"Valid loss: {valid_loss}")
|
|
print(f"Valid accuracy: {accuracy}")
|
|
print("---------------------")
|
|
|
|
def save_checkpoint(class_to_idx, arch, hidden_units, model, save_dir):
|
|
checkpoint = {
|
|
"class_to_idx": class_to_idx,
|
|
"model": arch,
|
|
"hidden_units": hidden_units,
|
|
"state_dict": model.state_dict()
|
|
}
|
|
|
|
torch.save(checkpoint, os.path.join(save_dir, "checkpoint.pth"))
|
|
|
|
if __name__ == '__main__':
|
|
arg_parser = argparse.ArgumentParser()
|
|
create_arguments(arg_parser)
|
|
args = arg_parser.parse_args()
|
|
|
|
data_directory = args.data_directory
|
|
save_dir = args.save_dir
|
|
arch = args.arch
|
|
learning_rate = args.learning_rate
|
|
hidden_units = args.hidden_units
|
|
epochs = args.epochs
|
|
gpu = args.gpu
|
|
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
|
|
check_data(data_directory, save_dir, hidden_units, learning_rate, epochs)
|
|
|
|
train_data = os.path.join(data_directory, "train")
|
|
valid_data = os.path.join(data_directory, "valid")
|
|
train_dataset = datasets.ImageFolder(train_data, transform=train_transform)
|
|
trainloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
|
|
|
valid_dataset = datasets.ImageFolder(valid_data, transform=valid_transform)
|
|
validloader = DataLoader(valid_dataset, batch_size=64, shuffle=True)
|
|
|
|
model, optimizer = create_model(arch, hidden_units, learning_rate)
|
|
|
|
criterion = nn.NLLLoss()
|
|
|
|
model.to(device)
|
|
criterion.to(device)
|
|
|
|
training(model, optimizer, criterion, epochs, device, trainloader, validloader)
|
|
save_checkpoint(train_dataset.class_to_idx, arch, hidden_units, model, save_dir)
|
|
|
|
|