You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
udemy-ML/02-Numpy/01-NumPy-Indexing-and-Selec...

653 lines
13 KiB

2 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"___\n",
"\n",
"<a href='http://www.pieriandata.com'><img src='../Pierian_Data_Logo.png'/></a>\n",
"___\n",
"<center><em>Copyright Pierian Data</em></center>\n",
"<center><em>For more information, visit us at <a href='http://www.pieriandata.com'>www.pieriandata.com</a></em></center>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NumPy Indexing and Selection\n",
"\n",
"In this lecture we will discuss how to select elements or groups of elements from an array."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Creating sample array\n",
"arr = np.arange(0,11)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Show\n",
"arr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bracket Indexing and Selection\n",
"The simplest way to pick one or some elements of an array looks very similar to python lists:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Get a value at an index\n",
"arr[8]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([1, 2, 3, 4])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Get values in a range\n",
"arr[1:5]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 2, 3, 4])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Get values in a range\n",
"arr[0:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Broadcasting\n",
"\n",
"NumPy arrays differ from normal Python lists because of their ability to broadcast. With lists, you can only reassign parts of a list with new parts of the same size and shape. That is, if you wanted to replace the first 5 elements in a list with a new value, you would have to pass in a new 5 element list. With NumPy arrays, you can broadcast a single value across a larger set of values:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([100, 100, 100, 100, 100, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Setting a value with index range (Broadcasting)\n",
"arr[0:5]=100\n",
"\n",
"#Show\n",
"arr"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Reset array, we'll see why I had to reset in a moment\n",
"arr = np.arange(0,11)\n",
"\n",
"#Show\n",
"arr"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1, 2, 3, 4, 5])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Important notes on Slices\n",
"slice_of_arr = arr[0:6]\n",
"\n",
"#Show slice\n",
"slice_of_arr"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([99, 99, 99, 99, 99, 99])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Change Slice\n",
"slice_of_arr[:]=99\n",
"\n",
"#Show Slice again\n",
"slice_of_arr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now note the changes also occur in our original array!"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Data is not copied, it's a view of the original array! This avoids memory problems!"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#To get a copy, need to be explicit\n",
"arr_copy = arr.copy()\n",
"\n",
"arr_copy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexing a 2D array (matrices)\n",
"\n",
"The general format is **arr_2d[row][col]** or **arr_2d[row,col]**. I recommend using the comma notation for clarity."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 5, 10, 15],\n",
" [20, 25, 30],\n",
" [35, 40, 45]])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr_2d = np.array(([5,10,15],[20,25,30],[35,40,45]))\n",
"\n",
"#Show\n",
"arr_2d"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([20, 25, 30])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Indexing row\n",
"arr_2d[1]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Format is arr_2d[row][col] or arr_2d[row,col]\n",
"\n",
"# Getting individual element value\n",
"arr_2d[1][0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Getting individual element value\n",
"arr_2d[1,0]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[10, 15],\n",
" [25, 30]])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 2D array slicing\n",
"\n",
"#Shape (2,2) from top right corner\n",
"arr_2d[:2,1:]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([35, 40, 45])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Shape bottom row\n",
"arr_2d[2]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([35, 40, 45])"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Shape bottom row\n",
"arr_2d[2,:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## More Indexing Help\n",
"Indexing a 2D matrix can be a bit confusing at first, especially when you start to add in step size. Try google image searching *NumPy indexing* to find useful images, like this one:\n",
"\n",
"<img src= 'numpy_indexing.png' width=500/> Image source: http://www.scipy-lectures.org/intro/numpy/numpy.html"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conditional Selection\n",
"\n",
"This is a very fundamental concept that will directly translate to pandas later on, make sure you understand this part!\n",
"\n",
"Let's briefly go over how to use brackets for selection based off of comparison operators."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr = np.arange(1,11)\n",
"arr"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([False, False, False, False, True, True, True, True, True,\n",
" True])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr > 4"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"bool_arr = arr>4"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([False, False, False, False, True, True, True, True, True,\n",
" True])"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bool_arr"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr[bool_arr]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 3, 4, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"arr[arr>2]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 3, 4, 5, 6, 7, 8, 9, 10])"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = 2\n",
"arr[arr>x]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Great Job!\n"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 1
}