{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "\n", "\n", "___\n", "
Copyright Pierian Data
\n", "
For more information, visit us at www.pieriandata.com
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# NumPy Exercises - Solutions\n", "\n", "Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks and then you'll be asked some more complicated questions.\n", "\n", "
IMPORTANT NOTE! Make sure you don't run the cells directly above the example output shown,
otherwise you will end up writing over the example output!
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1. Import NumPy as np" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2. Create an array of 10 zeros " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# CODE HERE\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.zeros(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3. Create an array of 10 ones" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.ones(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 4. Create an array of 10 fives" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.ones(10) * 5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 5. Create an array of the integers from 10 to 50" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,\n", " 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,\n", " 44, 45, 46, 47, 48, 49, 50])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.arange(10,51)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 6. Create an array of all the even integers from 10 to 50" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,\n", " 44, 46, 48, 50])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.arange(10,51,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 7. Create a 3x3 matrix with values ranging from 0 to 8" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 1, 2],\n", " [3, 4, 5],\n", " [6, 7, 8]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.arange(9).reshape(3,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 8. Create a 3x3 identity matrix" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1., 0., 0.],\n", " [0., 1., 0.],\n", " [0., 0., 1.]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.eye(3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 9. Use NumPy to generate a random number between 0 and 1

 NOTE: Your result's value should be different from the one shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.65248055])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.random.rand(1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 10. Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

  NOTE: Your result's values should be different from the ones shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.80076712, -1.12375847, -0.98524305, 0.11673573, 1.96346762,\n", " 1.81378592, -0.33790771, 0.85012656, 0.0100703 , -0.91005957,\n", " 0.29064366, 0.69906357, 0.1774377 , -0.61958694, -0.45498611,\n", " -2.0804685 , -0.06778549, 1.06403819, 0.4311884 , -1.09853837,\n", " 1.11980469, -0.48751963, 1.32517611, -0.61775122, -0.00622865])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.random.randn(25)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 11. Create the following matrix:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ],\n", " [0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 ],\n", " [0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 ],\n", " [0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ],\n", " [0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 ],\n", " [0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 ],\n", " [0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 ],\n", " [0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8 ],\n", " [0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 ],\n", " [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.arange(1,101).reshape(10,10) / 100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 12. Create an array of 20 linearly spaced points between 0 and 1:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632,\n", " 0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421,\n", " 0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211,\n", " 0.78947368, 0.84210526, 0.89473684, 0.94736842, 1. ])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "np.linspace(0,1,20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Numpy Indexing and Selection\n", "\n", "Now you will be given a starting matrix (be sure to run the cell below!), and be asked to replicate the resulting matrix outputs:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 2, 3, 4, 5],\n", " [ 6, 7, 8, 9, 10],\n", " [11, 12, 13, 14, 15],\n", " [16, 17, 18, 19, 20],\n", " [21, 22, 23, 24, 25]])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# RUN THIS CELL - THIS IS OUR STARTING MATRIX\n", "mat = np.arange(1,26).reshape(5,5)\n", "mat" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 13. Write code that reproduces the output shown below.

  Be careful not to run the cell immediately above the output, otherwise you won't be able to see the output any more." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# CODE HERE\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[12, 13, 14, 15],\n", " [17, 18, 19, 20],\n", " [22, 23, 24, 25]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat[2:,1:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 14. Write code that reproduces the output shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "20" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat[3,4]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 15. Write code that reproduces the output shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 2],\n", " [ 7],\n", " [12]])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat[:3,1:2]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 16. Write code that reproduces the output shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([21, 22, 23, 24, 25])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat[4,:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 17. Write code that reproduces the output shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[16, 17, 18, 19, 20],\n", " [21, 22, 23, 24, 25]])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat[3:5,:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NumPy Operations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 18. Get the sum of all the values in mat" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "325" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat.sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 19. Get the standard deviation of the values in mat" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7.211102550927978" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat.std()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 20. Get the sum of all the columns in mat" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([55, 60, 65, 70, 75])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DON'T WRITE HERE\n", "mat.sum(axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bonus Question\n", "\n", "We worked a lot with random data with numpy, but is there a way we can insure that we always get the same random numbers? [Click Here for a Hint](https://www.google.com/search?q=numpy+random+seed&rlz=1C1CHBF_enUS747US747&oq=numpy+random+seed&aqs=chrome..69i57j69i60j0l4.2087j0j7&sourceid=chrome&ie=UTF-8)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "np.random.seed(101)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Great Job!" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 1 }