You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

253 KiB

<html> <head> </head>

___

Copyright by Pierian Data Inc. For more information, visit us at www.pieriandata.com

Dealing with Missing Data

We already reviewed Pandas operations for missing data, now let's apply this to clean a real data file. Keep in mind, there is no 100% correct way of doing this, and this notebook just serves as an example of some reasonable approaches to take on this data.

Note: Throughout this section we will be slowly cleaning and adding features to the Ames Housing Dataset for use in the next section. Make sure to always be loading the same file name as in the notebook.

2nd Note: Some of the methods shown here may not lead to optimal performance, but instead are shown to display examples of various methods available.


Imports

In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [2]:
with open('../DATA/Ames_Housing_Feature_Description.txt','r') as f: 
    print(f.read())
MSSubClass: Identifies the type of dwelling involved in the sale.	

        20	1-STORY 1946 & NEWER ALL STYLES
        30	1-STORY 1945 & OLDER
        40	1-STORY W/FINISHED ATTIC ALL AGES
        45	1-1/2 STORY - UNFINISHED ALL AGES
        50	1-1/2 STORY FINISHED ALL AGES
        60	2-STORY 1946 & NEWER
        70	2-STORY 1945 & OLDER
        75	2-1/2 STORY ALL AGES
        80	SPLIT OR MULTI-LEVEL
        85	SPLIT FOYER
        90	DUPLEX - ALL STYLES AND AGES
       120	1-STORY PUD (Planned Unit Development) - 1946 & NEWER
       150	1-1/2 STORY PUD - ALL AGES
       160	2-STORY PUD - 1946 & NEWER
       180	PUD - MULTILEVEL - INCL SPLIT LEV/FOYER
       190	2 FAMILY CONVERSION - ALL STYLES AND AGES

MSZoning: Identifies the general zoning classification of the sale.
		
       A	Agriculture
       C	Commercial
       FV	Floating Village Residential
       I	Industrial
       RH	Residential High Density
       RL	Residential Low Density
       RP	Residential Low Density Park 
       RM	Residential Medium Density
	
LotFrontage: Linear feet of street connected to property

LotArea: Lot size in square feet

Street: Type of road access to property

       Grvl	Gravel	
       Pave	Paved
       	
Alley: Type of alley access to property

       Grvl	Gravel
       Pave	Paved
       NA 	No alley access
		
LotShape: General shape of property

       Reg	Regular	
       IR1	Slightly irregular
       IR2	Moderately Irregular
       IR3	Irregular
       
LandContour: Flatness of the property

       Lvl	Near Flat/Level	
       Bnk	Banked - Quick and significant rise from street grade to building
       HLS	Hillside - Significant slope from side to side
       Low	Depression
		
Utilities: Type of utilities available
		
       AllPub	All public Utilities (E,G,W,& S)	
       NoSewr	Electricity, Gas, and Water (Septic Tank)
       NoSeWa	Electricity and Gas Only
       ELO	Electricity only	
	
LotConfig: Lot configuration

       Inside	Inside lot
       Corner	Corner lot
       CulDSac	Cul-de-sac
       FR2	Frontage on 2 sides of property
       FR3	Frontage on 3 sides of property
	
LandSlope: Slope of property
		
       Gtl	Gentle slope
       Mod	Moderate Slope	
       Sev	Severe Slope
	
Neighborhood: Physical locations within Ames city limits

       Blmngtn	Bloomington Heights
       Blueste	Bluestem
       BrDale	Briardale
       BrkSide	Brookside
       ClearCr	Clear Creek
       CollgCr	College Creek
       Crawfor	Crawford
       Edwards	Edwards
       Gilbert	Gilbert
       IDOTRR	Iowa DOT and Rail Road
       MeadowV	Meadow Village
       Mitchel	Mitchell
       Names	North Ames
       NoRidge	Northridge
       NPkVill	Northpark Villa
       NridgHt	Northridge Heights
       NWAmes	Northwest Ames
       OldTown	Old Town
       SWISU	South & West of Iowa State University
       Sawyer	Sawyer
       SawyerW	Sawyer West
       Somerst	Somerset
       StoneBr	Stone Brook
       Timber	Timberland
       Veenker	Veenker
			
Condition1: Proximity to various conditions
	
       Artery	Adjacent to arterial street
       Feedr	Adjacent to feeder street	
       Norm	Normal	
       RRNn	Within 200' of North-South Railroad
       RRAn	Adjacent to North-South Railroad
       PosN	Near positive off-site feature--park, greenbelt, etc.
       PosA	Adjacent to postive off-site feature
       RRNe	Within 200' of East-West Railroad
       RRAe	Adjacent to East-West Railroad
	
Condition2: Proximity to various conditions (if more than one is present)
		
       Artery	Adjacent to arterial street
       Feedr	Adjacent to feeder street	
       Norm	Normal	
       RRNn	Within 200' of North-South Railroad
       RRAn	Adjacent to North-South Railroad
       PosN	Near positive off-site feature--park, greenbelt, etc.
       PosA	Adjacent to postive off-site feature
       RRNe	Within 200' of East-West Railroad
       RRAe	Adjacent to East-West Railroad
	
BldgType: Type of dwelling
		
       1Fam	Single-family Detached	
       2FmCon	Two-family Conversion; originally built as one-family dwelling
       Duplx	Duplex
       TwnhsE	Townhouse End Unit
       TwnhsI	Townhouse Inside Unit
	
HouseStyle: Style of dwelling
	
       1Story	One story
       1.5Fin	One and one-half story: 2nd level finished
       1.5Unf	One and one-half story: 2nd level unfinished
       2Story	Two story
       2.5Fin	Two and one-half story: 2nd level finished
       2.5Unf	Two and one-half story: 2nd level unfinished
       SFoyer	Split Foyer
       SLvl	Split Level
	
OverallQual: Rates the overall material and finish of the house

       10	Very Excellent
       9	Excellent
       8	Very Good
       7	Good
       6	Above Average
       5	Average
       4	Below Average
       3	Fair
       2	Poor
       1	Very Poor
	
OverallCond: Rates the overall condition of the house

       10	Very Excellent
       9	Excellent
       8	Very Good
       7	Good
       6	Above Average	
       5	Average
       4	Below Average	
       3	Fair
       2	Poor
       1	Very Poor
		
YearBuilt: Original construction date

YearRemodAdd: Remodel date (same as construction date if no remodeling or additions)

RoofStyle: Type of roof

       Flat	Flat
       Gable	Gable
       Gambrel	Gabrel (Barn)
       Hip	Hip
       Mansard	Mansard
       Shed	Shed
		
RoofMatl: Roof material

       ClyTile	Clay or Tile
       CompShg	Standard (Composite) Shingle
       Membran	Membrane
       Metal	Metal
       Roll	Roll
       Tar&Grv	Gravel & Tar
       WdShake	Wood Shakes
       WdShngl	Wood Shingles
		
Exterior1st: Exterior covering on house

       AsbShng	Asbestos Shingles
       AsphShn	Asphalt Shingles
       BrkComm	Brick Common
       BrkFace	Brick Face
       CBlock	Cinder Block
       CemntBd	Cement Board
       HdBoard	Hard Board
       ImStucc	Imitation Stucco
       MetalSd	Metal Siding
       Other	Other
       Plywood	Plywood
       PreCast	PreCast	
       Stone	Stone
       Stucco	Stucco
       VinylSd	Vinyl Siding
       Wd Sdng	Wood Siding
       WdShing	Wood Shingles
	
Exterior2nd: Exterior covering on house (if more than one material)

       AsbShng	Asbestos Shingles
       AsphShn	Asphalt Shingles
       BrkComm	Brick Common
       BrkFace	Brick Face
       CBlock	Cinder Block
       CemntBd	Cement Board
       HdBoard	Hard Board
       ImStucc	Imitation Stucco
       MetalSd	Metal Siding
       Other	Other
       Plywood	Plywood
       PreCast	PreCast
       Stone	Stone
       Stucco	Stucco
       VinylSd	Vinyl Siding
       Wd Sdng	Wood Siding
       WdShing	Wood Shingles
	
MasVnrType: Masonry veneer type

       BrkCmn	Brick Common
       BrkFace	Brick Face
       CBlock	Cinder Block
       None	None
       Stone	Stone
	
MasVnrArea: Masonry veneer area in square feet

ExterQual: Evaluates the quality of the material on the exterior 
		
       Ex	Excellent
       Gd	Good
       TA	Average/Typical
       Fa	Fair
       Po	Poor
		
ExterCond: Evaluates the present condition of the material on the exterior
		
       Ex	Excellent
       Gd	Good
       TA	Average/Typical
       Fa	Fair
       Po	Poor
		
Foundation: Type of foundation
		
       BrkTil	Brick & Tile
       CBlock	Cinder Block
       PConc	Poured Contrete	
       Slab	Slab
       Stone	Stone
       Wood	Wood
		
BsmtQual: Evaluates the height of the basement

       Ex	Excellent (100+ inches)	
       Gd	Good (90-99 inches)
       TA	Typical (80-89 inches)
       Fa	Fair (70-79 inches)
       Po	Poor (<70 inches
       NA	No Basement
		
BsmtCond: Evaluates the general condition of the basement

       Ex	Excellent
       Gd	Good
       TA	Typical - slight dampness allowed
       Fa	Fair - dampness or some cracking or settling
       Po	Poor - Severe cracking, settling, or wetness
       NA	No Basement
	
BsmtExposure: Refers to walkout or garden level walls

       Gd	Good Exposure
       Av	Average Exposure (split levels or foyers typically score average or above)	
       Mn	Mimimum Exposure
       No	No Exposure
       NA	No Basement
	
BsmtFinType1: Rating of basement finished area

       GLQ	Good Living Quarters
       ALQ	Average Living Quarters
       BLQ	Below Average Living Quarters	
       Rec	Average Rec Room
       LwQ	Low Quality
       Unf	Unfinshed
       NA	No Basement
		
BsmtFinSF1: Type 1 finished square feet

BsmtFinType2: Rating of basement finished area (if multiple types)

       GLQ	Good Living Quarters
       ALQ	Average Living Quarters
       BLQ	Below Average Living Quarters	
       Rec	Average Rec Room
       LwQ	Low Quality
       Unf	Unfinshed
       NA	No Basement

BsmtFinSF2: Type 2 finished square feet

BsmtUnfSF: Unfinished square feet of basement area

TotalBsmtSF: Total square feet of basement area

Heating: Type of heating
		
       Floor	Floor Furnace
       GasA	Gas forced warm air furnace
       GasW	Gas hot water or steam heat
       Grav	Gravity furnace	
       OthW	Hot water or steam heat other than gas
       Wall	Wall furnace
		
HeatingQC: Heating quality and condition

       Ex	Excellent
       Gd	Good
       TA	Average/Typical
       Fa	Fair
       Po	Poor
		
CentralAir: Central air conditioning

       N	No
       Y	Yes
		
Electrical: Electrical system

       SBrkr	Standard Circuit Breakers & Romex
       FuseA	Fuse Box over 60 AMP and all Romex wiring (Average)	
       FuseF	60 AMP Fuse Box and mostly Romex wiring (Fair)
       FuseP	60 AMP Fuse Box and mostly knob & tube wiring (poor)
       Mix	Mixed
		
1stFlrSF: First Floor square feet
 
2ndFlrSF: Second floor square feet

LowQualFinSF: Low quality finished square feet (all floors)

GrLivArea: Above grade (ground) living area square feet

BsmtFullBath: Basement full bathrooms

BsmtHalfBath: Basement half bathrooms

FullBath: Full bathrooms above grade

HalfBath: Half baths above grade

Bedroom: Bedrooms above grade (does NOT include basement bedrooms)

Kitchen: Kitchens above grade

KitchenQual: Kitchen quality

       Ex	Excellent
       Gd	Good
       TA	Typical/Average
       Fa	Fair
       Po	Poor
       	
TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)

Functional: Home functionality (Assume typical unless deductions are warranted)

       Typ	Typical Functionality
       Min1	Minor Deductions 1
       Min2	Minor Deductions 2
       Mod	Moderate Deductions
       Maj1	Major Deductions 1
       Maj2	Major Deductions 2
       Sev	Severely Damaged
       Sal	Salvage only
		
Fireplaces: Number of fireplaces

FireplaceQu: Fireplace quality

       Ex	Excellent - Exceptional Masonry Fireplace
       Gd	Good - Masonry Fireplace in main level
       TA	Average - Prefabricated Fireplace in main living area or Masonry Fireplace in basement
       Fa	Fair - Prefabricated Fireplace in basement
       Po	Poor - Ben Franklin Stove
       NA	No Fireplace
		
GarageType: Garage location
		
       2Types	More than one type of garage
       Attchd	Attached to home
       Basment	Basement Garage
       BuiltIn	Built-In (Garage part of house - typically has room above garage)
       CarPort	Car Port
       Detchd	Detached from home
       NA	No Garage
		
GarageYrBlt: Year garage was built
		
GarageFinish: Interior finish of the garage

       Fin	Finished
       RFn	Rough Finished	
       Unf	Unfinished
       NA	No Garage
		
GarageCars: Size of garage in car capacity

GarageArea: Size of garage in square feet

GarageQual: Garage quality

       Ex	Excellent
       Gd	Good
       TA	Typical/Average
       Fa	Fair
       Po	Poor
       NA	No Garage
		
GarageCond: Garage condition

       Ex	Excellent
       Gd	Good
       TA	Typical/Average
       Fa	Fair
       Po	Poor
       NA	No Garage
		
PavedDrive: Paved driveway

       Y	Paved 
       P	Partial Pavement
       N	Dirt/Gravel
		
WoodDeckSF: Wood deck area in square feet

OpenPorchSF: Open porch area in square feet

EnclosedPorch: Enclosed porch area in square feet

3SsnPorch: Three season porch area in square feet

ScreenPorch: Screen porch area in square feet

PoolArea: Pool area in square feet

PoolQC: Pool quality
		
       Ex	Excellent
       Gd	Good
       TA	Average/Typical
       Fa	Fair
       NA	No Pool
		
Fence: Fence quality
		
       GdPrv	Good Privacy
       MnPrv	Minimum Privacy
       GdWo	Good Wood
       MnWw	Minimum Wood/Wire
       NA	No Fence
	
MiscFeature: Miscellaneous feature not covered in other categories
		
       Elev	Elevator
       Gar2	2nd Garage (if not described in garage section)
       Othr	Other
       Shed	Shed (over 100 SF)
       TenC	Tennis Court
       NA	None
		
MiscVal: $Value of miscellaneous feature

MoSold: Month Sold (MM)

YrSold: Year Sold (YYYY)

SaleType: Type of sale
		
       WD 	Warranty Deed - Conventional
       CWD	Warranty Deed - Cash
       VWD	Warranty Deed - VA Loan
       New	Home just constructed and sold
       COD	Court Officer Deed/Estate
       Con	Contract 15% Down payment regular terms
       ConLw	Contract Low Down payment and low interest
       ConLI	Contract Low Interest
       ConLD	Contract Low Down
       Oth	Other
		
SaleCondition: Condition of sale

       Normal	Normal Sale
       Abnorml	Abnormal Sale -  trade, foreclosure, short sale
       AdjLand	Adjoining Land Purchase
       Alloca	Allocation - two linked properties with separate deeds, typically condo with a garage unit	
       Family	Sale between family members
       Partial	Home was not completed when last assessed (associated with New Homes)

Data

In [3]:
df = pd.read_csv("../DATA/Ames_outliers_removed.csv")
In [4]:
df.head()
Out[4]:
PID MS SubClass MS Zoning Lot Frontage Lot Area Street Alley Lot Shape Land Contour Utilities ... Pool Area Pool QC Fence Misc Feature Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
0 526301100 20 RL 141.0 31770 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 5 2010 WD Normal 215000
1 526350040 20 RH 80.0 11622 Pave NaN Reg Lvl AllPub ... 0 NaN MnPrv NaN 0 6 2010 WD Normal 105000
2 526351010 20 RL 81.0 14267 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN Gar2 12500 6 2010 WD Normal 172000
3 526353030 20 RL 93.0 11160 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 4 2010 WD Normal 244000
4 527105010 60 RL 74.0 13830 Pave NaN IR1 Lvl AllPub ... 0 NaN MnPrv NaN 0 3 2010 WD Normal 189900

5 rows × 81 columns

In [5]:
len(df.columns)
Out[5]:
81
In [6]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2927 entries, 0 to 2926
Data columns (total 81 columns):
 #   Column           Non-Null Count  Dtype  
---  ------           --------------  -----  
 0   PID              2927 non-null   int64  
 1   MS SubClass      2927 non-null   int64  
 2   MS Zoning        2927 non-null   object 
 3   Lot Frontage     2437 non-null   float64
 4   Lot Area         2927 non-null   int64  
 5   Street           2927 non-null   object 
 6   Alley            198 non-null    object 
 7   Lot Shape        2927 non-null   object 
 8   Land Contour     2927 non-null   object 
 9   Utilities        2927 non-null   object 
 10  Lot Config       2927 non-null   object 
 11  Land Slope       2927 non-null   object 
 12  Neighborhood     2927 non-null   object 
 13  Condition 1      2927 non-null   object 
 14  Condition 2      2927 non-null   object 
 15  Bldg Type        2927 non-null   object 
 16  House Style      2927 non-null   object 
 17  Overall Qual     2927 non-null   int64  
 18  Overall Cond     2927 non-null   int64  
 19  Year Built       2927 non-null   int64  
 20  Year Remod/Add   2927 non-null   int64  
 21  Roof Style       2927 non-null   object 
 22  Roof Matl        2927 non-null   object 
 23  Exterior 1st     2927 non-null   object 
 24  Exterior 2nd     2927 non-null   object 
 25  Mas Vnr Type     2904 non-null   object 
 26  Mas Vnr Area     2904 non-null   float64
 27  Exter Qual       2927 non-null   object 
 28  Exter Cond       2927 non-null   object 
 29  Foundation       2927 non-null   object 
 30  Bsmt Qual        2847 non-null   object 
 31  Bsmt Cond        2847 non-null   object 
 32  Bsmt Exposure    2844 non-null   object 
 33  BsmtFin Type 1   2847 non-null   object 
 34  BsmtFin SF 1     2926 non-null   float64
 35  BsmtFin Type 2   2846 non-null   object 
 36  BsmtFin SF 2     2926 non-null   float64
 37  Bsmt Unf SF      2926 non-null   float64
 38  Total Bsmt SF    2926 non-null   float64
 39  Heating          2927 non-null   object 
 40  Heating QC       2927 non-null   object 
 41  Central Air      2927 non-null   object 
 42  Electrical       2926 non-null   object 
 43  1st Flr SF       2927 non-null   int64  
 44  2nd Flr SF       2927 non-null   int64  
 45  Low Qual Fin SF  2927 non-null   int64  
 46  Gr Liv Area      2927 non-null   int64  
 47  Bsmt Full Bath   2925 non-null   float64
 48  Bsmt Half Bath   2925 non-null   float64
 49  Full Bath        2927 non-null   int64  
 50  Half Bath        2927 non-null   int64  
 51  Bedroom AbvGr    2927 non-null   int64  
 52  Kitchen AbvGr    2927 non-null   int64  
 53  Kitchen Qual     2927 non-null   object 
 54  TotRms AbvGrd    2927 non-null   int64  
 55  Functional       2927 non-null   object 
 56  Fireplaces       2927 non-null   int64  
 57  Fireplace Qu     1505 non-null   object 
 58  Garage Type      2770 non-null   object 
 59  Garage Yr Blt    2768 non-null   float64
 60  Garage Finish    2768 non-null   object 
 61  Garage Cars      2926 non-null   float64
 62  Garage Area      2926 non-null   float64
 63  Garage Qual      2768 non-null   object 
 64  Garage Cond      2768 non-null   object 
 65  Paved Drive      2927 non-null   object 
 66  Wood Deck SF     2927 non-null   int64  
 67  Open Porch SF    2927 non-null   int64  
 68  Enclosed Porch   2927 non-null   int64  
 69  3Ssn Porch       2927 non-null   int64  
 70  Screen Porch     2927 non-null   int64  
 71  Pool Area        2927 non-null   int64  
 72  Pool QC          12 non-null     object 
 73  Fence            572 non-null    object 
 74  Misc Feature     105 non-null    object 
 75  Misc Val         2927 non-null   int64  
 76  Mo Sold          2927 non-null   int64  
 77  Yr Sold          2927 non-null   int64  
 78  Sale Type        2927 non-null   object 
 79  Sale Condition   2927 non-null   object 
 80  SalePrice        2927 non-null   int64  
dtypes: float64(11), int64(27), object(43)
memory usage: 1.8+ MB

Removing the PID

We already have an index, so we don't need the PID unique identifier for the regression we will perform later on.

In [7]:
df = df.drop('PID',axis=1)
In [8]:
len(df.columns)
Out[8]:
80

Observing NaN Features

In [9]:
df.isnull()
Out[9]:
MS SubClass MS Zoning Lot Frontage Lot Area Street Alley Lot Shape Land Contour Utilities Lot Config ... Pool Area Pool QC Fence Misc Feature Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
0 False False False False False True False False False False ... False True True True False False False False False False
1 False False False False False True False False False False ... False True False True False False False False False False
2 False False False False False True False False False False ... False True True False False False False False False False
3 False False False False False True False False False False ... False True True True False False False False False False
4 False False False False False True False False False False ... False True False True False False False False False False
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2922 False False False False False True False False False False ... False True False True False False False False False False
2923 False False True False False True False False False False ... False True False True False False False False False False
2924 False False False False False True False False False False ... False True False False False False False False False False
2925 False False False False False True False False False False ... False True True True False False False False False False
2926 False False False False False True False False False False ... False True True True False False False False False False

2927 rows × 80 columns

In [10]:
df.isnull().sum()
Out[10]:
MS SubClass         0
MS Zoning           0
Lot Frontage      490
Lot Area            0
Street              0
                 ... 
Mo Sold             0
Yr Sold             0
Sale Type           0
Sale Condition      0
SalePrice           0
Length: 80, dtype: int64
In [11]:
100* df.isnull().sum() / len(df)
Out[11]:
MS SubClass        0.00000
MS Zoning          0.00000
Lot Frontage      16.74069
Lot Area           0.00000
Street             0.00000
                    ...   
Mo Sold            0.00000
Yr Sold            0.00000
Sale Type          0.00000
Sale Condition     0.00000
SalePrice          0.00000
Length: 80, dtype: float64
In [12]:
def percent_missing(df):
    percent_nan = 100* df.isnull().sum() / len(df)
    percent_nan = percent_nan[percent_nan>0].sort_values()
    return percent_nan
In [13]:
percent_nan = percent_missing(df)
In [14]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Removing Features or Removing Rows

If only a few rows relative to the size of your dataset are missing some values, then it might just be a good idea to drop those rows. What does this cost you in terms of performace? It essentialy removes potential training/testing data, but if its only a few rows, its unlikely to change performance.

Sometimes it is a good idea to remove a feature entirely if it has too many null values. However, you should carefully consider why it has so many null values, in certain situations null could just be used as a separate category.

Take for example a feature column for the number of cars that can fit into a garage. Perhaps if there is no garage then there is a null value, instead of a zero. It probably makes more sense to quickly fill the null values in this case with a zero instead of a null. Only you can decide based off your domain expertise and knowledge of the data set!

Working based on Rows Missing Data

Filling in Data or Dropping Data?

Let's explore how to choose to remove or fill in missing data for rows that are missing some data. Let's choose some threshold where we decide it is ok to drop a row if its missing some data (instead of attempting to fill in that missing data point). We will choose 1% as our threshold. This means if less than 1% of the rows are missing this feature, we will consider just dropping that row, instead of dealing with the feature itself. There is no right answer here, just use common sense and your domain knowledge of the dataset, obviously you don't want to drop a very high threshold like 50% , you should also explore correlation to the dataset, maybe it makes sense to drop the feature instead.

Based on the text description of the features, you will see that most of this missing data is actually NaN on purpose as a placeholder for 0 or "none".

Example of Filling in Data : Basement Columns

In [15]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

# Set 1% Threshold
plt.ylim(0,1)
Out[15]:
(0.0, 1.0)

Let's drop or fill the rows based on this data. You could either manually fill in the data (especially the Basement data based on the description text file) OR you could simply drop the row and not consider it. Watch the video for a full explanation of this, in reality it probably makes more sense to fill in the Missing Basement data since its well described in the text description.

In [16]:
# Could also imply we should ex
percent_nan[percent_nan < 1]
Out[16]:
Electrical        0.034165
Garage Area       0.034165
Total Bsmt SF     0.034165
Bsmt Unf SF       0.034165
BsmtFin SF 1      0.034165
BsmtFin SF 2      0.034165
Garage Cars       0.034165
Bsmt Full Bath    0.068329
Bsmt Half Bath    0.068329
Mas Vnr Area      0.785787
Mas Vnr Type      0.785787
dtype: float64
In [17]:
100/len(df)
Out[17]:
0.0341646737273659
In [18]:
df[df['Total Bsmt SF'].isnull()]
Out[18]:
MS SubClass MS Zoning Lot Frontage Lot Area Street Alley Lot Shape Land Contour Utilities Lot Config ... Pool Area Pool QC Fence Misc Feature Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
1341 20 RM 99.0 5940 Pave NaN IR1 Lvl AllPub FR3 ... 0 NaN MnPrv NaN 0 4 2008 ConLD Abnorml 79000

1 rows × 80 columns

In [19]:
df[df['Bsmt Half Bath'].isnull()]
Out[19]:
MS SubClass MS Zoning Lot Frontage Lot Area Street Alley Lot Shape Land Contour Utilities Lot Config ... Pool Area Pool QC Fence Misc Feature Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
1341 20 RM 99.0 5940 Pave NaN IR1 Lvl AllPub FR3 ... 0 NaN MnPrv NaN 0 4 2008 ConLD Abnorml 79000
1497 20 RL 123.0 47007 Pave NaN IR1 Lvl AllPub Inside ... 0 NaN NaN NaN 0 7 2008 WD Normal 284700

2 rows × 80 columns

Filling in data based on column names. There are 2 types of basement features, numerical and string descriptives.

The numerical basement columns:

In [20]:
bsmt_num_cols = ['BsmtFin SF 1', 'BsmtFin SF 2', 'Bsmt Unf SF','Total Bsmt SF', 'Bsmt Full Bath', 'Bsmt Half Bath']
df[bsmt_num_cols] = df[bsmt_num_cols].fillna(0)

The string basement columns:

In [21]:
bsmt_str_cols =  ['Bsmt Qual', 'Bsmt Cond', 'Bsmt Exposure', 'BsmtFin Type 1', 'BsmtFin Type 2']
df[bsmt_str_cols] = df[bsmt_str_cols].fillna('None')
In [22]:
percent_nan = percent_missing(df)
In [23]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Dropping Rows

A few of these features appear that it is just one or two rows missing the data. Based on our description .txt file of the dataset, we could also fill in these data points easily, and that is the more correct approach, but here we show how to drop in case you find yourself in a situation where it makes more sense to drop a row, based on missing column features.

df.dropna() ---
    subset : array-like, optional
            Labels along other axis to consider, e.g. if you are dropping rows
            these would be a list of columns to include.
In [24]:
df = df.dropna(axis=0,subset= ['Electrical','Garage Cars'])
In [25]:
percent_nan = percent_missing(df)
In [26]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
plt.ylim(0,1)
Out[26]:
(0.0, 1.0)

Mas Vnr Feature

Based on the Description Text File, Mas Vnr Type and Mas Vnr Area being missing (NaN) is likely to mean the house simply just doesn't have a masonry veneer, in which case, we will fill in this data as we did before.

In [27]:
df["Mas Vnr Type"] = df["Mas Vnr Type"].fillna("None")
df["Mas Vnr Area"] = df["Mas Vnr Area"].fillna(0)
In [28]:
percent_nan = percent_missing(df)
In [29]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Filling In Missing Column Data

Our previous approaches were based more on rows missing data, now we will take an approach based on the column features themselves, since larger percentages of the data appears to be missing.

Garage Columns

Based on the data description, these NaN seem to indicate no garage, so we will substitute with "None" or 0.

In [30]:
df[['Garage Type', 'Garage Finish', 'Garage Qual', 'Garage Cond']]
Out[30]:
Garage Type Garage Finish Garage Qual Garage Cond
0 Attchd Fin TA TA
1 Attchd Unf TA TA
2 Attchd Unf TA TA
3 Attchd Fin TA TA
4 Attchd Fin TA TA
... ... ... ... ...
2922 Detchd Unf TA TA
2923 Attchd Unf TA TA
2924 NaN NaN NaN NaN
2925 Attchd RFn TA TA
2926 Attchd Fin TA TA

2925 rows × 4 columns

In [31]:
gar_str_cols = ['Garage Type', 'Garage Finish', 'Garage Qual', 'Garage Cond']
df[gar_str_cols] = df[gar_str_cols].fillna('None')
In [32]:
df['Garage Yr Blt'] = df['Garage Yr Blt'].fillna(0)
In [33]:
percent_nan = percent_missing(df)
In [34]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Dropping Feature Columns

Sometimes you may want to take the approach that above a certain missing percentage threshold, you will simply remove the feature from all the data. For example if 99% of rows are missing a feature, it will not be predictive, since almost all the data does not have any value for it. In our particular data set, many of these high percentage NaN features are actually plasceholders for "none" or 0. But for the sake of showing variations on dealing with missing data, we will remove these features, instead of filling them in with the appropriate value.

In [35]:
percent_nan.index
Out[35]:
Index(['Lot Frontage', 'Fireplace Qu', 'Fence', 'Alley', 'Misc Feature',
       'Pool QC'],
      dtype='object')
In [36]:
df[['Lot Frontage', 'Fireplace Qu', 'Fence', 'Alley', 'Misc Feature','Pool QC']]
Out[36]:
Lot Frontage Fireplace Qu Fence Alley Misc Feature Pool QC
0 141.0 Gd NaN NaN NaN NaN
1 80.0 NaN MnPrv NaN NaN NaN
2 81.0 NaN NaN NaN Gar2 NaN
3 93.0 TA NaN NaN NaN NaN
4 74.0 TA MnPrv NaN NaN NaN
... ... ... ... ... ... ...
2922 37.0 NaN GdPrv NaN NaN NaN
2923 NaN NaN MnPrv NaN NaN NaN
2924 62.0 NaN MnPrv NaN Shed NaN
2925 77.0 TA NaN NaN NaN NaN
2926 74.0 TA NaN NaN NaN NaN

2925 rows × 6 columns

In [37]:
df = df.drop(['Pool QC','Misc Feature','Alley','Fence'],axis=1)
In [38]:
percent_nan = percent_missing(df)
In [39]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Filling in Fireplace Quality based on Description Text

In [40]:
df['Fireplace Qu'] = df['Fireplace Qu'].fillna("None")
In [41]:
percent_nan = percent_missing(df)
In [42]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);

Imputation of Missing Data

To impute missing data, we need to decide what other filled in (no NaN values) feature most probably relates and is correlated with the missing feature data. In this particular case we will use:

Neighborhood: Physical locations within Ames city limits

LotFrontage: Linear feet of street connected to property

We will operate under the assumption that the Lot Frontage is related to what neighborhood a house is in.

In [43]:
df['Neighborhood'].unique()
Out[43]:
array(['NAmes', 'Gilbert', 'StoneBr', 'NWAmes', 'Somerst', 'BrDale',
       'NPkVill', 'NridgHt', 'Blmngtn', 'NoRidge', 'SawyerW', 'Sawyer',
       'Greens', 'BrkSide', 'OldTown', 'IDOTRR', 'ClearCr', 'SWISU',
       'Edwards', 'CollgCr', 'Crawfor', 'Blueste', 'Mitchel', 'Timber',
       'MeadowV', 'Veenker', 'GrnHill', 'Landmrk'], dtype=object)
In [44]:
plt.figure(figsize=(8,12))
sns.boxplot(x='Lot Frontage',y='Neighborhood',data=df,orient='h')
Out[44]:
<AxesSubplot:xlabel='Lot Frontage', ylabel='Neighborhood'>

Impute Missing Data based on other Features

There are more complex methods, but usually the simpler the better, it avoids building models on top of other models.

More Info on Options: https://scikit-learn.org/stable/modules/impute.html

In [45]:
df.groupby('Neighborhood')['Lot Frontage']
Out[45]:
<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000211F18E23C8>
In [46]:
df.groupby('Neighborhood')['Lot Frontage'].mean()
Out[46]:
Neighborhood
Blmngtn    46.900000
Blueste    27.300000
BrDale     21.500000
BrkSide    55.789474
ClearCr    88.150000
CollgCr    71.336364
Crawfor    69.951807
Edwards    64.794286
Gilbert    74.207207
Greens     41.000000
GrnHill          NaN
IDOTRR     62.383721
Landmrk          NaN
MeadowV    25.606061
Mitchel    75.144444
NAmes      75.210667
NPkVill    28.142857
NWAmes     81.517647
NoRidge    91.629630
NridgHt    84.184049
OldTown    61.777293
SWISU      59.068182
Sawyer     74.551020
SawyerW    70.669811
Somerst    64.549383
StoneBr    62.173913
Timber     81.303571
Veenker    72.000000
Name: Lot Frontage, dtype: float64
In [47]:
df.head()['Lot Frontage']
Out[47]:
0    141.0
1     80.0
2     81.0
3     93.0
4     74.0
Name: Lot Frontage, dtype: float64
In [48]:
df[df['Lot Frontage'].isnull()]
Out[48]:
MS SubClass MS Zoning Lot Frontage Lot Area Street Lot Shape Land Contour Utilities Lot Config Land Slope ... Enclosed Porch 3Ssn Porch Screen Porch Pool Area Misc Val Mo Sold Yr Sold Sale Type Sale Condition SalePrice
11 20 RL NaN 7980 Pave IR1 Lvl AllPub Inside Gtl ... 0 0 0 0 500 3 2010 WD Normal 185000
14 120 RL NaN 6820 Pave IR1 Lvl AllPub Corner Gtl ... 0 0 140 0 0 6 2010 WD Normal 212000
22 60 FV NaN 7500 Pave Reg Lvl AllPub Inside Gtl ... 0 0 0 0 0 1 2010 WD Normal 216000
23 20 RL NaN 11241 Pave IR1 Lvl AllPub CulDSac Gtl ... 0 0 0 0 700 3 2010 WD Normal 149000
24 20 RL NaN 12537 Pave IR1 Lvl AllPub CulDSac Gtl ... 0 0 0 0 0 4 2010 WD Normal 149900
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2891 20 RL NaN 16669 Pave IR1 Lvl AllPub Corner Gtl ... 0 0 0 0 0 1 2006 WD Normal 228000
2894 60 RL NaN 11170 Pave IR2 Lvl AllPub Corner Gtl ... 0 0 0 0 0 4 2006 WD Normal 250000
2895 20 RL NaN 8098 Pave IR1 Lvl AllPub Inside Gtl ... 0 0 0 0 0 10 2006 WD Normal 202000
2909 90 RL NaN 11836 Pave IR1 Lvl AllPub Corner Gtl ... 0 0 0 0 0 3 2006 WD Normal 146500
2923 20 RL NaN 8885 Pave IR1 Low AllPub Inside Mod ... 0 0 0 0 0 6 2006 WD Normal 131000

490 rows × 76 columns

In [49]:
df.iloc[21:26]['Lot Frontage']
Out[49]:
21    85.0
22     NaN
23     NaN
24     NaN
25    65.0
Name: Lot Frontage, dtype: float64
In [50]:
df.groupby('Neighborhood')['Lot Frontage'].transform(lambda val: val.fillna(val.mean()))
Out[50]:
0       141.000000
1        80.000000
2        81.000000
3        93.000000
4        74.000000
           ...    
2922     37.000000
2923     75.144444
2924     62.000000
2925     77.000000
2926     74.000000
Name: Lot Frontage, Length: 2925, dtype: float64
In [51]:
df.groupby('Neighborhood')['Lot Frontage'].transform(lambda val: val.fillna(val.mean())).iloc[21:26]
Out[51]:
21    85.000000
22    64.549383
23    75.210667
24    75.210667
25    65.000000
Name: Lot Frontage, dtype: float64
In [52]:
df['Lot Frontage'] = df.groupby('Neighborhood')['Lot Frontage'].transform(lambda val: val.fillna(val.mean()))
In [53]:
percent_nan = percent_missing(df)
In [54]:
sns.barplot(x=percent_nan.index,y=percent_nan)
plt.xticks(rotation=90);
In [55]:
df['Lot Frontage'] = df['Lot Frontage'].fillna(0)
In [56]:
percent_nan = percent_missing(df)
In [57]:
percent_nan
Out[57]:
Series([], dtype: float64)

Great! We no longer have any missing data in our entire data set! Keep in mind, we should eventually turn all these transformations into an easy to use function. For now, lets' save this dataset:

In [58]:
df.to_csv("../DATA/Ames_NO_Missing_Data.csv",index=False)

</html>