init commit

master
Khiem Ton 2 years ago
commit 9d7be132b6
Signed by: th4tkh13m
GPG Key ID: 4D9CF147DCADD05D

4
.gitignore vendored

@ -0,0 +1,4 @@
/lightning_logs/
/paper.csv
/rock.csv
/scissor.csv

@ -0,0 +1,60 @@
import lightning.pytorch as pl
from torch.utils.data import random_split, DataLoader, Dataset
import torch
import pandas as pd
import os
class RPSDataset(Dataset):
def __init__(self, data_dir):
super().__init__()
self.data_dir = data_dir
self.data, self.labels, self.label_dict = self.get_data()
def get_data(self):
labels = []
label_dict = {}
data = None
i = 0
assert len(os.listdir(self.data_dir)) != 0
for f in os.listdir(self.data_dir):
if f.endswith(".csv"):
current_data = torch.from_numpy(
pd.read_csv(os.path.join(self.data_dir, f), index_col=0).to_numpy()).to(torch.float32)
if i not in label_dict:
label_dict[i] = f.split(".csv")[0].strip()
labels = labels + [i] * current_data.shape[0]
i += 1
if data is None:
data = current_data
else:
data = torch.cat([data, current_data], dim=0)
return data, labels, label_dict
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
class RockPaperScissorData(pl.LightningDataModule):
def __init__(self, data_dir, batch_size):
super().__init__()
self.data_dir = data_dir
self.train_data = None
self.val_data = None
self.batch_size = batch_size
def prepare_data(self) -> None:
self.train_data = RPSDataset(self.data_dir)
self.train_data, self.val_data = random_split(self.train_data, [0.8, 0.2])
def train_dataloader(self):
return DataLoader(self.train_data, batch_size=self.batch_size, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_data, batch_size=self.batch_size, shuffle=True)

@ -0,0 +1,71 @@
import mediapipe as mp
import cv2
from pathlib import Path
import os
from typing import Union, List, Any
import pandas as pd
def process_landmark(landmarks):
landmark_lst = []
for hand in landmarks:
current_hand_lm = hand.landmark
for lm in current_hand_lm:
landmark_lst.append(lm.x)
landmark_lst.append(lm.y)
landmark_lst.append(lm.z)
# Set to 0 if there is only 1 hand
if len(landmarks) == 1:
for i in range(21):
landmark_lst.append(0)
landmark_lst.append(0)
landmark_lst.append(0)
return landmark_lst
def create_training_data(label: str, data_lst: list[list[Union[int, Any]]],
data_path: Union[Path, str]) -> None:
df = pd.DataFrame(data=data_lst)
file_path = os.path.join(data_path, label + ".csv")
df.to_csv(file_path)
def capture_images(num_frames: int) -> list[list[Union[int, Any]]]:
mpHands = mp.solutions.hands
Hands = mpHands.Hands()
mpDraws = mp.solutions.drawing_utils
cap = cv2.VideoCapture(0)
count = 0
data_list = []
while True:
ret, frame = cap.read()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = Hands.process(frame_rgb)
if result.multi_hand_landmarks:
for hand_landmark in result.multi_hand_landmarks:
mpDraws.draw_landmarks(frame, hand_landmark, mpHands.HAND_CONNECTIONS)
data_list.append(process_landmark(result.multi_hand_landmarks))
count += 1
if count >= num_frames:
break
cv2.imshow("Frame", frame)
if cv2.waitKey(1) == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
return data_list
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
label = input("Enter the label: ")
data_list = capture_images(500)
create_training_data(label, data_list, os.getcwd())

@ -0,0 +1,96 @@
import os
import random
import time
import torch
from model import ClassifyModel
from datasets import RPSDataset
import cv2
import mediapipe as mp
def process_data(landmarks):
landmark_lst = []
for hand in landmarks:
current_hand_lm = hand.landmark
for lm in current_hand_lm:
landmark_lst.append(lm.x)
landmark_lst.append(lm.y)
landmark_lst.append(lm.z)
# Set to 0 if there is only 1 hand
if len(landmarks) == 1:
for i in range(21):
landmark_lst.append(0)
landmark_lst.append(0)
landmark_lst.append(0)
landmark_t = torch.Tensor(landmark_lst).unsqueeze(0)
return landmark_t
def predict(_model, x, label_dict):
output = torch.argmax(_model(x), dim=1).item()
return label_dict[output]
def computer_predict(label_dict, model=None):
prediction = 0
if not model:
prediction = random.randint(0, 2)
return label_dict[prediction]
def show_result(u_output, c_output):
if u_output == c_output:
return "Draw"
if (u_output == "rock" and c_output == "paper") or \
(u_output == "paper" and c_output == "scissor") or \
(u_output == "scissor" and c_output == "rock"):
return "Lose"
return "Win"
if __name__ == '__main__':
mpHands = mp.solutions.hands
Hands = mpHands.Hands()
mpDraws = mp.solutions.drawing_utils
label_dict = RPSDataset(os.getcwd()).label_dict
model = ClassifyModel.load_from_checkpoint("./lightning_logs/version_6/checkpoints/epoch=12-step=247.ckpt")
model.eval()
cap = cv2.VideoCapture(0)
current_choose = None
output = None
if not cap.isOpened():
exit(1)
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if current_choose:
cv2.putText(frame, f"You choose: {output}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX,
2, (0, 0, 255), 2, 2)
computer_choose = computer_predict(label_dict)
result = show_result(current_choose, computer_choose)
cv2.putText(frame, f"Computer choose: {computer_choose}, You {result}", (50, 100), cv2.FONT_HERSHEY_SIMPLEX,
2, (0, 0, 255), 2, 2)
cv2.imshow("frame", frame)
cv2.waitKey(1)
time.sleep(3)
current_choose = None
else:
result = Hands.process(frame_rgb)
if result.multi_hand_landmarks:
x = process_data(result.multi_hand_landmarks)
output = predict(model, x, label_dict)
cv2.putText(frame, f"CURRENT: {output}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX,
2, (0, 0, 255), 2, 2)
key = cv2.waitKey(1)
cv2.imshow("frame", frame)
if key == ord("o"):
current_choose = output
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()

@ -0,0 +1,62 @@
import torch
import lightning.pytorch as pl
from typing import Any
class ClassifyModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer1 = torch.nn.Sequential(
torch.nn.Linear(126, 256),
torch.nn.ReLU()
)
self.layer2 = torch.nn.Sequential(
torch.nn.Dropout(),
torch.nn.Linear(256, 512),
torch.nn.ReLU()
)
self.layer3 = torch.nn.Sequential(
torch.nn.Dropout(),
torch.nn.Linear(512, 512),
torch.nn.ReLU()
)
self.layer4 = torch.nn.Sequential(
torch.nn.Dropout(),
torch.nn.Linear(512, 256),
torch.nn.ReLU()
)
self.layer5 = torch.nn.Sequential(
torch.nn.Dropout(),
torch.nn.Linear(256, 128),
torch.nn.ReLU()
)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(128, 3),
torch.nn.Softmax(dim=1)
)
def forward(self, x) -> Any:
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
return self.classifier(x)
def training_step(self, batch, batch_idx):
x, y = batch
output = self.forward(x)
log_output = torch.log(output)
loss = torch.nn.NLLLoss()(log_output, y)
self.log("train_loss", loss.item(), prog_bar=True, logger=True, on_step=True, on_epoch=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
output = self.forward(x)
log_output = torch.log(output)
loss = torch.nn.NLLLoss()(log_output, y)
self.log("val_loss", loss.item(), prog_bar=True, logger=True, on_step=True, on_epoch=True)
def configure_optimizers(self) -> Any:
return torch.optim.Adam(self.parameters())

@ -0,0 +1,16 @@
import os
from model import ClassifyModel
import lightning.pytorch as pl
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from datasets import RockPaperScissorData
if __name__ == "__main__":
trainer = pl.Trainer(max_epochs=100, callbacks=[EarlyStopping(monitor="val_loss",
mode="min")],
default_root_dir=os.getcwd())
data = RockPaperScissorData(os.getcwd(), 64)
model = ClassifyModel()
trainer.fit(model, data)
Loading…
Cancel
Save