You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.0 KiB
159 lines
5.0 KiB
2 years ago
|
import os
|
||
|
import argparse
|
||
|
import torch
|
||
|
import json
|
||
|
from collections import OrderedDict
|
||
|
from torchvision import models
|
||
|
from torch import nn
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def process_image(image):
|
||
|
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
|
||
|
returns an Numpy array
|
||
|
'''
|
||
|
np_img = None
|
||
|
with Image.open(image) as im:
|
||
|
w, h = im.size
|
||
|
min_s = min(w, h)
|
||
|
if min_s == w:
|
||
|
w = 256
|
||
|
h = h * 256 // w
|
||
|
else:
|
||
|
h = 256
|
||
|
w = w * 256 // h
|
||
|
im.thumbnail((w, h))
|
||
|
w, h = im.size
|
||
|
(left, upper, right, lower) = w//2-224//2, h//2-224/2, w//2+224//2, h//2+224//2
|
||
|
im_cropped = im.crop((left, upper, right, lower))
|
||
|
|
||
|
np_img = np.array(im_cropped) / 255
|
||
|
arr = (np_img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
|
||
|
return torch.from_numpy(arr.transpose(2, 0, 1))
|
||
|
|
||
|
|
||
|
def predict(image_path, model, device, topk=5):
|
||
|
''' Predict the class (or classes) of an image using a trained deep learning model.
|
||
|
'''
|
||
|
probs, classes = None, None
|
||
|
image = process_image(image_path)
|
||
|
image = image.view((1, 3, 224, 224)).type(torch.FloatTensor)
|
||
|
|
||
|
model.eval()
|
||
|
model.to(device)
|
||
|
with torch.no_grad():
|
||
|
|
||
|
image = image.to(device)
|
||
|
output = model(image)
|
||
|
ps = torch.exp(output)
|
||
|
|
||
|
top_p, top_class = ps.topk(topk, dim=1)
|
||
|
probs, classes = top_p.tolist()[0], top_class.tolist()[0]
|
||
|
return probs, classes
|
||
|
|
||
|
|
||
|
def create_arguments(parser):
|
||
|
parser.add_argument("img_pth", type=str)
|
||
|
parser.add_argument("checkpoint_pth", type=str)
|
||
|
parser.add_argument("--top_k", type=int,default=1)
|
||
|
parser.add_argument("--category_names",type=str,default="cat_to_name.json")
|
||
|
parser.add_argument("--gpu", action='store_true')
|
||
|
|
||
|
|
||
|
def check_data(category_names, img_pth, checkpoint_pth, top_k):
|
||
|
with open(category_names, 'r') as f:
|
||
|
cat_to_name = json.load(f, strict=False)
|
||
|
if not os.path.exists(img_pth):
|
||
|
raise ValueError("Image Path not exists")
|
||
|
if not os.path.exists(checkpoint_pth):
|
||
|
raise ValueError("Checkpoint Path not exists")
|
||
|
if top_k <= 0:
|
||
|
raise ValueError()
|
||
|
return cat_to_name
|
||
|
|
||
|
|
||
|
def restore_model(checkpoint_pth):
|
||
|
# Load model
|
||
|
checkpoint = torch.load(checkpoint_pth)
|
||
|
model_name = checkpoint["model"]
|
||
|
class_to_idx = checkpoint["class_to_idx"]
|
||
|
hidden_units = checkpoint["hidden_units"]
|
||
|
state_dict = checkpoint["state_dict"]
|
||
|
|
||
|
model = getattr(models, model_name)(pretrained=True)
|
||
|
for param in model.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
if model.__class__.__name__ == "ResNet":
|
||
|
# ResNet classify layer is fc
|
||
|
in_features = model.fc.in_features
|
||
|
|
||
|
fc = nn.Sequential(OrderedDict([
|
||
|
("fc1", nn.Linear(in_features, hidden_units)),
|
||
|
("relu1", nn.ReLU()),
|
||
|
("fc2", nn.Linear(hidden_units, 102)),
|
||
|
("output", nn.LogSoftmax(dim=1))
|
||
|
]))
|
||
|
|
||
|
model.fc = fc
|
||
|
elif model.__class__.__name__ == "VGG":
|
||
|
# VGG classify layer is classifer
|
||
|
# It has 6 mini-layers
|
||
|
classifier = nn.Sequential(OrderedDict([
|
||
|
("fc1", nn.Linear(25088, 4096)),
|
||
|
("relu1", nn.ReLU()),
|
||
|
("dropout1", nn.Dropout(0.5)),
|
||
|
("fc2", nn.Linear(4096, hidden_units)),
|
||
|
("relu2", nn.ReLU()),
|
||
|
("dropout2", nn.Dropout(0.5)),
|
||
|
("fc3", nn.Linear(hidden_units, 102)),
|
||
|
("output", nn.LogSoftmax(dim=1))
|
||
|
]))
|
||
|
model.classifier = classifier
|
||
|
model.load_state_dict(state_dict=state_dict)
|
||
|
model.class_to_idx = class_to_idx
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def show_result(cat_to_name, probs, classes, class_to_idx):
|
||
|
if cat_to_name:
|
||
|
res = dict((v, k) for k, v in class_to_idx.items())
|
||
|
types = [cat_to_name[res[i]] for i in classes]
|
||
|
|
||
|
idx = probs.index(max(probs))
|
||
|
print(f"Class {types[idx]} with prob: {probs[idx]}")
|
||
|
|
||
|
print(f"Top {top_k}")
|
||
|
for i in range(len(probs)):
|
||
|
print(f"Class {types[i]} with prob: {probs[i]}")
|
||
|
else:
|
||
|
idx = probs.index(max(probs))
|
||
|
print(f"Class {classes[idx]} with prob: {probs[idx]}")
|
||
|
|
||
|
print(f"Top {top_k}")
|
||
|
for i in range(len(probs)):
|
||
|
print(f"Class {classes[i]} with prob: {probs[i]}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
arg_parser = argparse.ArgumentParser()
|
||
|
create_arguments(arg_parser)
|
||
|
args = arg_parser.parse_args()
|
||
|
|
||
|
img_pth = args.img_pth
|
||
|
checkpoint_pth = args.checkpoint_pth
|
||
|
top_k = args.top_k
|
||
|
gpu = args.gpu
|
||
|
cat_to_name = check_data(args.category_names, img_pth, checkpoint_pth, top_k)
|
||
|
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
|
||
|
|
||
|
|
||
|
model = restore_model(checkpoint_pth)
|
||
|
probs, classes = predict(img_pth, model, device, top_k)
|
||
|
show_result(cat_to_name, probs, classes, model.class_to_idx)
|
||
|
|