master
Khiem Ton 2 years ago
commit 08814111c5
Signed by: th4tkh13m
GPG Key ID: 4D9CF147DCADD05D

File diff suppressed because one or more lines are too long

@ -0,0 +1,158 @@
import os
import argparse
import torch
import json
from collections import OrderedDict
from torchvision import models
from torch import nn
import numpy as np
from PIL import Image
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
np_img = None
with Image.open(image) as im:
w, h = im.size
min_s = min(w, h)
if min_s == w:
w = 256
h = h * 256 // w
else:
h = 256
w = w * 256 // h
im.thumbnail((w, h))
w, h = im.size
(left, upper, right, lower) = w//2-224//2, h//2-224/2, w//2+224//2, h//2+224//2
im_cropped = im.crop((left, upper, right, lower))
np_img = np.array(im_cropped) / 255
arr = (np_img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
return torch.from_numpy(arr.transpose(2, 0, 1))
def predict(image_path, model, device, topk=5):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
probs, classes = None, None
image = process_image(image_path)
image = image.view((1, 3, 224, 224)).type(torch.FloatTensor)
model.eval()
model.to(device)
with torch.no_grad():
image = image.to(device)
output = model(image)
ps = torch.exp(output)
top_p, top_class = ps.topk(topk, dim=1)
probs, classes = top_p.tolist()[0], top_class.tolist()[0]
return probs, classes
def create_arguments(parser):
parser.add_argument("img_pth", type=str)
parser.add_argument("checkpoint_pth", type=str)
parser.add_argument("--top_k", type=int,default=1)
parser.add_argument("--category_names",type=str,default="cat_to_name.json")
parser.add_argument("--gpu", action='store_true')
def check_data(category_names, img_pth, checkpoint_pth, top_k):
with open(category_names, 'r') as f:
cat_to_name = json.load(f, strict=False)
if not os.path.exists(img_pth):
raise ValueError("Image Path not exists")
if not os.path.exists(checkpoint_pth):
raise ValueError("Checkpoint Path not exists")
if top_k <= 0:
raise ValueError()
return cat_to_name
def restore_model(checkpoint_pth):
# Load model
checkpoint = torch.load(checkpoint_pth)
model_name = checkpoint["model"]
class_to_idx = checkpoint["class_to_idx"]
hidden_units = checkpoint["hidden_units"]
state_dict = checkpoint["state_dict"]
model = getattr(models, model_name)(pretrained=True)
for param in model.parameters():
param.requires_grad = False
if model.__class__.__name__ == "ResNet":
# ResNet classify layer is fc
in_features = model.fc.in_features
fc = nn.Sequential(OrderedDict([
("fc1", nn.Linear(in_features, hidden_units)),
("relu1", nn.ReLU()),
("fc2", nn.Linear(hidden_units, 102)),
("output", nn.LogSoftmax(dim=1))
]))
model.fc = fc
elif model.__class__.__name__ == "VGG":
# VGG classify layer is classifer
# It has 6 mini-layers
classifier = nn.Sequential(OrderedDict([
("fc1", nn.Linear(25088, 4096)),
("relu1", nn.ReLU()),
("dropout1", nn.Dropout(0.5)),
("fc2", nn.Linear(4096, hidden_units)),
("relu2", nn.ReLU()),
("dropout2", nn.Dropout(0.5)),
("fc3", nn.Linear(hidden_units, 102)),
("output", nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
model.load_state_dict(state_dict=state_dict)
model.class_to_idx = class_to_idx
return model
def show_result(cat_to_name, probs, classes, class_to_idx):
if cat_to_name:
res = dict((v, k) for k, v in class_to_idx.items())
types = [cat_to_name[res[i]] for i in classes]
idx = probs.index(max(probs))
print(f"Class {types[idx]} with prob: {probs[idx]}")
print(f"Top {top_k}")
for i in range(len(probs)):
print(f"Class {types[i]} with prob: {probs[i]}")
else:
idx = probs.index(max(probs))
print(f"Class {classes[idx]} with prob: {probs[idx]}")
print(f"Top {top_k}")
for i in range(len(probs)):
print(f"Class {classes[i]} with prob: {probs[i]}")
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
create_arguments(arg_parser)
args = arg_parser.parse_args()
img_pth = args.img_pth
checkpoint_pth = args.checkpoint_pth
top_k = args.top_k
gpu = args.gpu
cat_to_name = check_data(args.category_names, img_pth, checkpoint_pth, top_k)
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
model = restore_model(checkpoint_pth)
probs, classes = predict(img_pth, model, device, top_k)
show_result(cat_to_name, probs, classes, model.class_to_idx)

@ -0,0 +1,176 @@
import argparse
import torch
from torch import nn, optim
from torchvision import datasets, models, transforms
from torch.utils.data.dataloader import DataLoader
import os
from collections import OrderedDict
# Transforms
train_transform = transforms.Compose([
transforms.Resize(255),
transforms.ColorJitter(brightness=2),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
valid_transform = transforms.Compose([
transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def create_arguments(parser):
parser.add_argument("data_directory", type=str)
parser.add_argument("--save_dir", type=str, help="Directory to save checkpoints", default=os.getcwd())
parser.add_argument("--arch", type=str, help="Model's architecture", default="resnet34")
parser.add_argument("--learning_rate", type=float, help="Model's learning rate", default=0.002)
parser.add_argument("--hidden_units", type=int, help="Model's number of hidden units", default=128)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--gpu", action='store_true')
def check_data(data_directory, save_dir, hidden_units, learning_rate, epochs):
# Check data
if not os.path.exists(data_directory):
raise ValueError("Data directory not exist!")
if not os.path.exists(save_dir):
raise ValueError("Checkpoint save directory not exist!")
if hidden_units <= 0 or learning_rate <= 0 or epochs <= 0:
raise ValueError()
def create_model(arch, hidden_units, learning_rate):
model = getattr(models, arch)(pretrained=True)
optimizer = None
for param in model.parameters():
param.requires_grad = False
if model.__class__.__name__ == "ResNet":
# ResNet classify layer is fc
in_features = model.fc.in_features
fc = nn.Sequential(OrderedDict([
("fc1", nn.Linear(in_features, hidden_units)),
("relu1", nn.ReLU()),
("fc2", nn.Linear(hidden_units, 102)),
("output", nn.LogSoftmax(dim=1))
]))
model.fc = fc
optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate)
elif model.__class__.__name__ == "VGG":
# VGG classify layer is classifer
# It has 6 mini-layers
classifier = nn.Sequential(OrderedDict([
("fc1", nn.Linear(25088, 4096)),
("relu1", nn.ReLU()),
("dropout1", nn.Dropout(0.5)),
("fc2", nn.Linear(4096, hidden_units)),
("relu2", nn.ReLU()),
("dropout2", nn.Dropout(0.5)),
("fc3", nn.Linear(hidden_units, 102)),
("output", nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
optimizer = optim.SGD(model.classifier.parameters(), lr=learning_rate)
else:
raise ValueError("Architecture not support")
return model, optimizer
def training(model, optimizer, criterion, epochs, device, trainloader, validloader):
train_losses, valid_losses = [], []
for i in range(epochs):
print(f"Epoch {i + 1}/{epochs}")
model.train()
train_loss = 0
valid_loss = 0
accuracy = 0
for images, labels in trainloader:
images, labels = images.to(device), labels.to(device)
output = model(images)
loss = criterion(output, labels)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_losses.append(train_loss)
with torch.no_grad():
model.eval()
for images, labels in validloader:
images, labels = images.to(device), labels.to(device)
output = model(images)
loss = criterion(output, labels)
valid_loss += loss.item()
output_p = torch.exp(output)
_, top_class = output_p.topk(1, dim=1)
equals = top_class == labels.view(top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
accuracy = accuracy / len(validloader) * 100
print(f"Train loss: {train_loss}")
print(f"Valid loss: {valid_loss}")
print(f"Valid accuracy: {accuracy}")
print("---------------------")
def save_checkpoint(class_to_idx, arch, hidden_units, model, save_dir):
checkpoint = {
"class_to_idx": class_to_idx,
"model": arch,
"hidden_units": hidden_units,
"state_dict": model.state_dict()
}
torch.save(checkpoint, os.path.join(save_dir, "checkpoint.pth"))
if __name__ == '__main__':
arg_parser = argparse.ArgumentParser()
create_arguments(arg_parser)
args = arg_parser.parse_args()
data_directory = args.data_directory
save_dir = args.save_dir
arch = args.arch
learning_rate = args.learning_rate
hidden_units = args.hidden_units
epochs = args.epochs
gpu = args.gpu
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
check_data(data_directory, save_dir, hidden_units, learning_rate, epochs)
train_data = os.path.join(data_directory, "train")
valid_data = os.path.join(data_directory, "valid")
train_dataset = datasets.ImageFolder(train_data, transform=train_transform)
trainloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
valid_dataset = datasets.ImageFolder(valid_data, transform=valid_transform)
validloader = DataLoader(valid_dataset, batch_size=64, shuffle=True)
model, optimizer = create_model(arch, hidden_units, learning_rate)
criterion = nn.NLLLoss()
model.to(device)
criterion.to(device)
training(model, optimizer, criterion, epochs, device, trainloader, validloader)
save_checkpoint(train_dataset.class_to_idx, arch, hidden_units, model, save_dir)
Loading…
Cancel
Save