commit
08814111c5
File diff suppressed because one or more lines are too long
@ -0,0 +1,158 @@
|
||||
import os
|
||||
import argparse
|
||||
import torch
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
from torchvision import models
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
|
||||
|
||||
def process_image(image):
|
||||
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
|
||||
returns an Numpy array
|
||||
'''
|
||||
np_img = None
|
||||
with Image.open(image) as im:
|
||||
w, h = im.size
|
||||
min_s = min(w, h)
|
||||
if min_s == w:
|
||||
w = 256
|
||||
h = h * 256 // w
|
||||
else:
|
||||
h = 256
|
||||
w = w * 256 // h
|
||||
im.thumbnail((w, h))
|
||||
w, h = im.size
|
||||
(left, upper, right, lower) = w//2-224//2, h//2-224/2, w//2+224//2, h//2+224//2
|
||||
im_cropped = im.crop((left, upper, right, lower))
|
||||
|
||||
np_img = np.array(im_cropped) / 255
|
||||
arr = (np_img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
|
||||
return torch.from_numpy(arr.transpose(2, 0, 1))
|
||||
|
||||
|
||||
def predict(image_path, model, device, topk=5):
|
||||
''' Predict the class (or classes) of an image using a trained deep learning model.
|
||||
'''
|
||||
probs, classes = None, None
|
||||
image = process_image(image_path)
|
||||
image = image.view((1, 3, 224, 224)).type(torch.FloatTensor)
|
||||
|
||||
model.eval()
|
||||
model.to(device)
|
||||
with torch.no_grad():
|
||||
|
||||
image = image.to(device)
|
||||
output = model(image)
|
||||
ps = torch.exp(output)
|
||||
|
||||
top_p, top_class = ps.topk(topk, dim=1)
|
||||
probs, classes = top_p.tolist()[0], top_class.tolist()[0]
|
||||
return probs, classes
|
||||
|
||||
|
||||
def create_arguments(parser):
|
||||
parser.add_argument("img_pth", type=str)
|
||||
parser.add_argument("checkpoint_pth", type=str)
|
||||
parser.add_argument("--top_k", type=int,default=1)
|
||||
parser.add_argument("--category_names",type=str,default="cat_to_name.json")
|
||||
parser.add_argument("--gpu", action='store_true')
|
||||
|
||||
|
||||
def check_data(category_names, img_pth, checkpoint_pth, top_k):
|
||||
with open(category_names, 'r') as f:
|
||||
cat_to_name = json.load(f, strict=False)
|
||||
if not os.path.exists(img_pth):
|
||||
raise ValueError("Image Path not exists")
|
||||
if not os.path.exists(checkpoint_pth):
|
||||
raise ValueError("Checkpoint Path not exists")
|
||||
if top_k <= 0:
|
||||
raise ValueError()
|
||||
return cat_to_name
|
||||
|
||||
|
||||
def restore_model(checkpoint_pth):
|
||||
# Load model
|
||||
checkpoint = torch.load(checkpoint_pth)
|
||||
model_name = checkpoint["model"]
|
||||
class_to_idx = checkpoint["class_to_idx"]
|
||||
hidden_units = checkpoint["hidden_units"]
|
||||
state_dict = checkpoint["state_dict"]
|
||||
|
||||
model = getattr(models, model_name)(pretrained=True)
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if model.__class__.__name__ == "ResNet":
|
||||
# ResNet classify layer is fc
|
||||
in_features = model.fc.in_features
|
||||
|
||||
fc = nn.Sequential(OrderedDict([
|
||||
("fc1", nn.Linear(in_features, hidden_units)),
|
||||
("relu1", nn.ReLU()),
|
||||
("fc2", nn.Linear(hidden_units, 102)),
|
||||
("output", nn.LogSoftmax(dim=1))
|
||||
]))
|
||||
|
||||
model.fc = fc
|
||||
elif model.__class__.__name__ == "VGG":
|
||||
# VGG classify layer is classifer
|
||||
# It has 6 mini-layers
|
||||
classifier = nn.Sequential(OrderedDict([
|
||||
("fc1", nn.Linear(25088, 4096)),
|
||||
("relu1", nn.ReLU()),
|
||||
("dropout1", nn.Dropout(0.5)),
|
||||
("fc2", nn.Linear(4096, hidden_units)),
|
||||
("relu2", nn.ReLU()),
|
||||
("dropout2", nn.Dropout(0.5)),
|
||||
("fc3", nn.Linear(hidden_units, 102)),
|
||||
("output", nn.LogSoftmax(dim=1))
|
||||
]))
|
||||
model.classifier = classifier
|
||||
model.load_state_dict(state_dict=state_dict)
|
||||
model.class_to_idx = class_to_idx
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def show_result(cat_to_name, probs, classes, class_to_idx):
|
||||
if cat_to_name:
|
||||
res = dict((v, k) for k, v in class_to_idx.items())
|
||||
types = [cat_to_name[res[i]] for i in classes]
|
||||
|
||||
idx = probs.index(max(probs))
|
||||
print(f"Class {types[idx]} with prob: {probs[idx]}")
|
||||
|
||||
print(f"Top {top_k}")
|
||||
for i in range(len(probs)):
|
||||
print(f"Class {types[i]} with prob: {probs[i]}")
|
||||
else:
|
||||
idx = probs.index(max(probs))
|
||||
print(f"Class {classes[idx]} with prob: {probs[idx]}")
|
||||
|
||||
print(f"Top {top_k}")
|
||||
for i in range(len(probs)):
|
||||
print(f"Class {classes[i]} with prob: {probs[i]}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
arg_parser = argparse.ArgumentParser()
|
||||
create_arguments(arg_parser)
|
||||
args = arg_parser.parse_args()
|
||||
|
||||
img_pth = args.img_pth
|
||||
checkpoint_pth = args.checkpoint_pth
|
||||
top_k = args.top_k
|
||||
gpu = args.gpu
|
||||
cat_to_name = check_data(args.category_names, img_pth, checkpoint_pth, top_k)
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
|
||||
|
||||
|
||||
model = restore_model(checkpoint_pth)
|
||||
probs, classes = predict(img_pth, model, device, top_k)
|
||||
show_result(cat_to_name, probs, classes, model.class_to_idx)
|
||||
|
@ -0,0 +1,176 @@
|
||||
import argparse
|
||||
import torch
|
||||
from torch import nn, optim
|
||||
from torchvision import datasets, models, transforms
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
# Transforms
|
||||
train_transform = transforms.Compose([
|
||||
transforms.Resize(255),
|
||||
transforms.ColorJitter(brightness=2),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.RandomRotation(30),
|
||||
transforms.RandomResizedCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
valid_transform = transforms.Compose([
|
||||
transforms.Resize(255),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
|
||||
def create_arguments(parser):
|
||||
parser.add_argument("data_directory", type=str)
|
||||
parser.add_argument("--save_dir", type=str, help="Directory to save checkpoints", default=os.getcwd())
|
||||
parser.add_argument("--arch", type=str, help="Model's architecture", default="resnet34")
|
||||
parser.add_argument("--learning_rate", type=float, help="Model's learning rate", default=0.002)
|
||||
parser.add_argument("--hidden_units", type=int, help="Model's number of hidden units", default=128)
|
||||
parser.add_argument("--epochs", type=int, default=10)
|
||||
parser.add_argument("--gpu", action='store_true')
|
||||
|
||||
|
||||
def check_data(data_directory, save_dir, hidden_units, learning_rate, epochs):
|
||||
# Check data
|
||||
if not os.path.exists(data_directory):
|
||||
raise ValueError("Data directory not exist!")
|
||||
if not os.path.exists(save_dir):
|
||||
raise ValueError("Checkpoint save directory not exist!")
|
||||
if hidden_units <= 0 or learning_rate <= 0 or epochs <= 0:
|
||||
raise ValueError()
|
||||
|
||||
|
||||
def create_model(arch, hidden_units, learning_rate):
|
||||
model = getattr(models, arch)(pretrained=True)
|
||||
optimizer = None
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if model.__class__.__name__ == "ResNet":
|
||||
# ResNet classify layer is fc
|
||||
in_features = model.fc.in_features
|
||||
|
||||
fc = nn.Sequential(OrderedDict([
|
||||
("fc1", nn.Linear(in_features, hidden_units)),
|
||||
("relu1", nn.ReLU()),
|
||||
("fc2", nn.Linear(hidden_units, 102)),
|
||||
("output", nn.LogSoftmax(dim=1))
|
||||
]))
|
||||
|
||||
model.fc = fc
|
||||
|
||||
optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate)
|
||||
elif model.__class__.__name__ == "VGG":
|
||||
# VGG classify layer is classifer
|
||||
# It has 6 mini-layers
|
||||
classifier = nn.Sequential(OrderedDict([
|
||||
("fc1", nn.Linear(25088, 4096)),
|
||||
("relu1", nn.ReLU()),
|
||||
("dropout1", nn.Dropout(0.5)),
|
||||
("fc2", nn.Linear(4096, hidden_units)),
|
||||
("relu2", nn.ReLU()),
|
||||
("dropout2", nn.Dropout(0.5)),
|
||||
("fc3", nn.Linear(hidden_units, 102)),
|
||||
("output", nn.LogSoftmax(dim=1))
|
||||
]))
|
||||
model.classifier = classifier
|
||||
optimizer = optim.SGD(model.classifier.parameters(), lr=learning_rate)
|
||||
else:
|
||||
raise ValueError("Architecture not support")
|
||||
|
||||
return model, optimizer
|
||||
|
||||
|
||||
|
||||
def training(model, optimizer, criterion, epochs, device, trainloader, validloader):
|
||||
train_losses, valid_losses = [], []
|
||||
for i in range(epochs):
|
||||
print(f"Epoch {i + 1}/{epochs}")
|
||||
model.train()
|
||||
|
||||
train_loss = 0
|
||||
valid_loss = 0
|
||||
accuracy = 0
|
||||
for images, labels in trainloader:
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
output = model(images)
|
||||
|
||||
loss = criterion(output, labels)
|
||||
train_loss += loss.item()
|
||||
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
train_losses.append(train_loss)
|
||||
with torch.no_grad():
|
||||
model.eval()
|
||||
for images, labels in validloader:
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
output = model(images)
|
||||
|
||||
loss = criterion(output, labels)
|
||||
valid_loss += loss.item()
|
||||
|
||||
output_p = torch.exp(output)
|
||||
_, top_class = output_p.topk(1, dim=1)
|
||||
equals = top_class == labels.view(top_class.shape)
|
||||
accuracy += torch.mean(equals.type(torch.FloatTensor))
|
||||
accuracy = accuracy / len(validloader) * 100
|
||||
|
||||
print(f"Train loss: {train_loss}")
|
||||
print(f"Valid loss: {valid_loss}")
|
||||
print(f"Valid accuracy: {accuracy}")
|
||||
print("---------------------")
|
||||
|
||||
def save_checkpoint(class_to_idx, arch, hidden_units, model, save_dir):
|
||||
checkpoint = {
|
||||
"class_to_idx": class_to_idx,
|
||||
"model": arch,
|
||||
"hidden_units": hidden_units,
|
||||
"state_dict": model.state_dict()
|
||||
}
|
||||
|
||||
torch.save(checkpoint, os.path.join(save_dir, "checkpoint.pth"))
|
||||
|
||||
if __name__ == '__main__':
|
||||
arg_parser = argparse.ArgumentParser()
|
||||
create_arguments(arg_parser)
|
||||
args = arg_parser.parse_args()
|
||||
|
||||
data_directory = args.data_directory
|
||||
save_dir = args.save_dir
|
||||
arch = args.arch
|
||||
learning_rate = args.learning_rate
|
||||
hidden_units = args.hidden_units
|
||||
epochs = args.epochs
|
||||
gpu = args.gpu
|
||||
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
|
||||
check_data(data_directory, save_dir, hidden_units, learning_rate, epochs)
|
||||
|
||||
train_data = os.path.join(data_directory, "train")
|
||||
valid_data = os.path.join(data_directory, "valid")
|
||||
train_dataset = datasets.ImageFolder(train_data, transform=train_transform)
|
||||
trainloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||
|
||||
valid_dataset = datasets.ImageFolder(valid_data, transform=valid_transform)
|
||||
validloader = DataLoader(valid_dataset, batch_size=64, shuffle=True)
|
||||
|
||||
model, optimizer = create_model(arch, hidden_units, learning_rate)
|
||||
|
||||
criterion = nn.NLLLoss()
|
||||
|
||||
model.to(device)
|
||||
criterion.to(device)
|
||||
|
||||
training(model, optimizer, criterion, epochs, device, trainloader, validloader)
|
||||
save_checkpoint(train_dataset.class_to_idx, arch, hidden_units, model, save_dir)
|
||||
|
||||
|
Loading…
Reference in new issue