You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2419 lines
62 KiB
2419 lines
62 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"___\n",
|
|
"\n",
|
|
"<a href='http://www.pieriandata.com'><img src='../Pierian_Data_Logo.png'/></a>\n",
|
|
"___\n",
|
|
"<center><em>Copyright by Pierian Data Inc.</em></center>\n",
|
|
"<center><em>For more information, visit us at <a href='http://www.pieriandata.com'>www.pieriandata.com</a></em></center>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Combining DataFrames\n",
|
|
"\n",
|
|
"## Full Official Guide (Lots of examples!)\n",
|
|
"\n",
|
|
"### https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html\n",
|
|
"\n",
|
|
"-------\n",
|
|
"-------"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 213,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"source": [
|
|
"## Concatenation\n",
|
|
"\n",
|
|
"Directly \"glue\" together dataframes."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 214,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data_one = {'A': ['A0', 'A1', 'A2', 'A3'],'B': ['B0', 'B1', 'B2', 'B3']}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 215,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data_two = {'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 216,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"one = pd.DataFrame(data_one)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 217,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"two = pd.DataFrame(data_two)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 218,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>A</th>\n",
|
|
" <th>B</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>A0</td>\n",
|
|
" <td>B0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>A1</td>\n",
|
|
" <td>B1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>A2</td>\n",
|
|
" <td>B2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>A3</td>\n",
|
|
" <td>B3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" A B\n",
|
|
"0 A0 B0\n",
|
|
"1 A1 B1\n",
|
|
"2 A2 B2\n",
|
|
"3 A3 B3"
|
|
]
|
|
},
|
|
"execution_count": 218,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"one"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 219,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>C</th>\n",
|
|
" <th>D</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>C0</td>\n",
|
|
" <td>D0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>C1</td>\n",
|
|
" <td>D1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>C2</td>\n",
|
|
" <td>D2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>C3</td>\n",
|
|
" <td>D3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" C D\n",
|
|
"0 C0 D0\n",
|
|
"1 C1 D1\n",
|
|
"2 C2 D2\n",
|
|
"3 C3 D3"
|
|
]
|
|
},
|
|
"execution_count": 219,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"two"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Axis = 0 \n",
|
|
"\n",
|
|
"### Concatenate along rows"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 220,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"axis0 = pd.concat([one,two],axis=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 221,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>A</th>\n",
|
|
" <th>B</th>\n",
|
|
" <th>C</th>\n",
|
|
" <th>D</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>A0</td>\n",
|
|
" <td>B0</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>A1</td>\n",
|
|
" <td>B1</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>A2</td>\n",
|
|
" <td>B2</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>A3</td>\n",
|
|
" <td>B3</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>C0</td>\n",
|
|
" <td>D0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>C1</td>\n",
|
|
" <td>D1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>C2</td>\n",
|
|
" <td>D2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>C3</td>\n",
|
|
" <td>D3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" A B C D\n",
|
|
"0 A0 B0 NaN NaN\n",
|
|
"1 A1 B1 NaN NaN\n",
|
|
"2 A2 B2 NaN NaN\n",
|
|
"3 A3 B3 NaN NaN\n",
|
|
"0 NaN NaN C0 D0\n",
|
|
"1 NaN NaN C1 D1\n",
|
|
"2 NaN NaN C2 D2\n",
|
|
"3 NaN NaN C3 D3"
|
|
]
|
|
},
|
|
"execution_count": 221,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"axis0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Axis = 1\n",
|
|
"\n",
|
|
"### Concatenate along columns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 222,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"axis1 = pd.concat([one,two],axis=1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 223,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>A</th>\n",
|
|
" <th>B</th>\n",
|
|
" <th>C</th>\n",
|
|
" <th>D</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>A0</td>\n",
|
|
" <td>B0</td>\n",
|
|
" <td>C0</td>\n",
|
|
" <td>D0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>A1</td>\n",
|
|
" <td>B1</td>\n",
|
|
" <td>C1</td>\n",
|
|
" <td>D1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>A2</td>\n",
|
|
" <td>B2</td>\n",
|
|
" <td>C2</td>\n",
|
|
" <td>D2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>A3</td>\n",
|
|
" <td>B3</td>\n",
|
|
" <td>C3</td>\n",
|
|
" <td>D3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" A B C D\n",
|
|
"0 A0 B0 C0 D0\n",
|
|
"1 A1 B1 C1 D1\n",
|
|
"2 A2 B2 C2 D2\n",
|
|
"3 A3 B3 C3 D3"
|
|
]
|
|
},
|
|
"execution_count": 223,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"axis1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Axis 0 , but columns match up\n",
|
|
"**In case you wanted this:**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 224,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"two.columns = one.columns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 225,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>A</th>\n",
|
|
" <th>B</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>A0</td>\n",
|
|
" <td>B0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>A1</td>\n",
|
|
" <td>B1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>A2</td>\n",
|
|
" <td>B2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>A3</td>\n",
|
|
" <td>B3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>C0</td>\n",
|
|
" <td>D0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>C1</td>\n",
|
|
" <td>D1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>C2</td>\n",
|
|
" <td>D2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>C3</td>\n",
|
|
" <td>D3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" A B\n",
|
|
"0 A0 B0\n",
|
|
"1 A1 B1\n",
|
|
"2 A2 B2\n",
|
|
"3 A3 B3\n",
|
|
"0 C0 D0\n",
|
|
"1 C1 D1\n",
|
|
"2 C2 D2\n",
|
|
"3 C3 D3"
|
|
]
|
|
},
|
|
"execution_count": 225,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.concat([one,two])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Merge\n",
|
|
"\n",
|
|
"## Data Tables"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 226,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"registrations = pd.DataFrame({'reg_id':[1,2,3,4],'name':['Andrew','Bobo','Claire','David']})\n",
|
|
"logins = pd.DataFrame({'log_id':[1,2,3,4],'name':['Xavier','Andrew','Yolanda','Bobo']})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 227,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Claire</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>David</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name\n",
|
|
"0 1 Andrew\n",
|
|
"1 2 Bobo\n",
|
|
"2 3 Claire\n",
|
|
"3 4 David"
|
|
]
|
|
},
|
|
"execution_count": 227,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 228,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" log_id name\n",
|
|
"0 1 Xavier\n",
|
|
"1 2 Andrew\n",
|
|
"2 3 Yolanda\n",
|
|
"3 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 228,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"logins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# pd.merge()\n",
|
|
"\n",
|
|
"Merge pandas DataFrames based on key columns, similar to a SQL join. Results based on the **how** parameter."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 229,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Help on function merge in module pandas.core.reshape.merge:\n",
|
|
"\n",
|
|
"merge(left, right, how: str = 'inner', on=None, left_on=None, right_on=None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes=('_x', '_y'), copy: bool = True, indicator: bool = False, validate=None) -> 'DataFrame'\n",
|
|
" Merge DataFrame or named Series objects with a database-style join.\n",
|
|
" \n",
|
|
" The join is done on columns or indexes. If joining columns on\n",
|
|
" columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes\n",
|
|
" on indexes or indexes on a column or columns, the index will be passed on.\n",
|
|
" \n",
|
|
" Parameters\n",
|
|
" ----------\n",
|
|
" left : DataFrame\n",
|
|
" right : DataFrame or named Series\n",
|
|
" Object to merge with.\n",
|
|
" how : {'left', 'right', 'outer', 'inner'}, default 'inner'\n",
|
|
" Type of merge to be performed.\n",
|
|
" \n",
|
|
" * left: use only keys from left frame, similar to a SQL left outer join;\n",
|
|
" preserve key order.\n",
|
|
" * right: use only keys from right frame, similar to a SQL right outer join;\n",
|
|
" preserve key order.\n",
|
|
" * outer: use union of keys from both frames, similar to a SQL full outer\n",
|
|
" join; sort keys lexicographically.\n",
|
|
" * inner: use intersection of keys from both frames, similar to a SQL inner\n",
|
|
" join; preserve the order of the left keys.\n",
|
|
" on : label or list\n",
|
|
" Column or index level names to join on. These must be found in both\n",
|
|
" DataFrames. If `on` is None and not merging on indexes then this defaults\n",
|
|
" to the intersection of the columns in both DataFrames.\n",
|
|
" left_on : label or list, or array-like\n",
|
|
" Column or index level names to join on in the left DataFrame. Can also\n",
|
|
" be an array or list of arrays of the length of the left DataFrame.\n",
|
|
" These arrays are treated as if they are columns.\n",
|
|
" right_on : label or list, or array-like\n",
|
|
" Column or index level names to join on in the right DataFrame. Can also\n",
|
|
" be an array or list of arrays of the length of the right DataFrame.\n",
|
|
" These arrays are treated as if they are columns.\n",
|
|
" left_index : bool, default False\n",
|
|
" Use the index from the left DataFrame as the join key(s). If it is a\n",
|
|
" MultiIndex, the number of keys in the other DataFrame (either the index\n",
|
|
" or a number of columns) must match the number of levels.\n",
|
|
" right_index : bool, default False\n",
|
|
" Use the index from the right DataFrame as the join key. Same caveats as\n",
|
|
" left_index.\n",
|
|
" sort : bool, default False\n",
|
|
" Sort the join keys lexicographically in the result DataFrame. If False,\n",
|
|
" the order of the join keys depends on the join type (how keyword).\n",
|
|
" suffixes : tuple of (str, str), default ('_x', '_y')\n",
|
|
" Suffix to apply to overlapping column names in the left and right\n",
|
|
" side, respectively. To raise an exception on overlapping columns use\n",
|
|
" (False, False).\n",
|
|
" copy : bool, default True\n",
|
|
" If False, avoid copy if possible.\n",
|
|
" indicator : bool or str, default False\n",
|
|
" If True, adds a column to output DataFrame called \"_merge\" with\n",
|
|
" information on the source of each row.\n",
|
|
" If string, column with information on source of each row will be added to\n",
|
|
" output DataFrame, and column will be named value of string.\n",
|
|
" Information column is Categorical-type and takes on a value of \"left_only\"\n",
|
|
" for observations whose merge key only appears in 'left' DataFrame,\n",
|
|
" \"right_only\" for observations whose merge key only appears in 'right'\n",
|
|
" DataFrame, and \"both\" if the observation's merge key is found in both.\n",
|
|
" \n",
|
|
" validate : str, optional\n",
|
|
" If specified, checks if merge is of specified type.\n",
|
|
" \n",
|
|
" * \"one_to_one\" or \"1:1\": check if merge keys are unique in both\n",
|
|
" left and right datasets.\n",
|
|
" * \"one_to_many\" or \"1:m\": check if merge keys are unique in left\n",
|
|
" dataset.\n",
|
|
" * \"many_to_one\" or \"m:1\": check if merge keys are unique in right\n",
|
|
" dataset.\n",
|
|
" * \"many_to_many\" or \"m:m\": allowed, but does not result in checks.\n",
|
|
" \n",
|
|
" .. versionadded:: 0.21.0\n",
|
|
" \n",
|
|
" Returns\n",
|
|
" -------\n",
|
|
" DataFrame\n",
|
|
" A DataFrame of the two merged objects.\n",
|
|
" \n",
|
|
" See Also\n",
|
|
" --------\n",
|
|
" merge_ordered : Merge with optional filling/interpolation.\n",
|
|
" merge_asof : Merge on nearest keys.\n",
|
|
" DataFrame.join : Similar method using indices.\n",
|
|
" \n",
|
|
" Notes\n",
|
|
" -----\n",
|
|
" Support for specifying index levels as the `on`, `left_on`, and\n",
|
|
" `right_on` parameters was added in version 0.23.0\n",
|
|
" Support for merging named Series objects was added in version 0.24.0\n",
|
|
" \n",
|
|
" Examples\n",
|
|
" --------\n",
|
|
" \n",
|
|
" >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],\n",
|
|
" ... 'value': [1, 2, 3, 5]})\n",
|
|
" >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],\n",
|
|
" ... 'value': [5, 6, 7, 8]})\n",
|
|
" >>> df1\n",
|
|
" lkey value\n",
|
|
" 0 foo 1\n",
|
|
" 1 bar 2\n",
|
|
" 2 baz 3\n",
|
|
" 3 foo 5\n",
|
|
" >>> df2\n",
|
|
" rkey value\n",
|
|
" 0 foo 5\n",
|
|
" 1 bar 6\n",
|
|
" 2 baz 7\n",
|
|
" 3 foo 8\n",
|
|
" \n",
|
|
" Merge df1 and df2 on the lkey and rkey columns. The value columns have\n",
|
|
" the default suffixes, _x and _y, appended.\n",
|
|
" \n",
|
|
" >>> df1.merge(df2, left_on='lkey', right_on='rkey')\n",
|
|
" lkey value_x rkey value_y\n",
|
|
" 0 foo 1 foo 5\n",
|
|
" 1 foo 1 foo 8\n",
|
|
" 2 foo 5 foo 5\n",
|
|
" 3 foo 5 foo 8\n",
|
|
" 4 bar 2 bar 6\n",
|
|
" 5 baz 3 baz 7\n",
|
|
" \n",
|
|
" Merge DataFrames df1 and df2 with specified left and right suffixes\n",
|
|
" appended to any overlapping columns.\n",
|
|
" \n",
|
|
" >>> df1.merge(df2, left_on='lkey', right_on='rkey',\n",
|
|
" ... suffixes=('_left', '_right'))\n",
|
|
" lkey value_left rkey value_right\n",
|
|
" 0 foo 1 foo 5\n",
|
|
" 1 foo 1 foo 8\n",
|
|
" 2 foo 5 foo 5\n",
|
|
" 3 foo 5 foo 8\n",
|
|
" 4 bar 2 bar 6\n",
|
|
" 5 baz 3 baz 7\n",
|
|
" \n",
|
|
" Merge DataFrames df1 and df2, but raise an exception if the DataFrames have\n",
|
|
" any overlapping columns.\n",
|
|
" \n",
|
|
" >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))\n",
|
|
" Traceback (most recent call last):\n",
|
|
" ...\n",
|
|
" ValueError: columns overlap but no suffix specified:\n",
|
|
" Index(['value'], dtype='object')\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"help(pd.merge)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"-----\n",
|
|
"\n",
|
|
"# Inner,Left, Right, and Outer Joins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Inner Join\n",
|
|
"\n",
|
|
"**Match up where the key is present in BOTH tables. There should be no NaNs due to the join, since by definition to be part of the Inner Join they need info in both tables.**\n",
|
|
"**Only Andrew and Bobo both registered and logged in.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 230,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name log_id\n",
|
|
"0 1 Andrew 2\n",
|
|
"1 2 Bobo 4"
|
|
]
|
|
},
|
|
"execution_count": 230,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Notice pd.merge doesn't take in a list like concat\n",
|
|
"pd.merge(registrations,logins,how='inner',on='name')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 231,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name log_id\n",
|
|
"0 1 Andrew 2\n",
|
|
"1 2 Bobo 4"
|
|
]
|
|
},
|
|
"execution_count": 231,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Pandas smart enough to figure out key column (on parameter) if only one column name matches up\n",
|
|
"pd.merge(registrations,logins,how='inner')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 232,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Pandas reports an error if \"on\" key column isn't in both dataframes\n",
|
|
"# pd.merge(registrations,logins,how='inner',on='reg_id')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Left Join\n",
|
|
"\n",
|
|
"**Match up AND include all rows from Left Table.**\n",
|
|
"**Show everyone who registered on Left Table, if they don't have login info, then fill with NaN.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 233,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Claire</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>David</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name log_id\n",
|
|
"0 1 Andrew 2.0\n",
|
|
"1 2 Bobo 4.0\n",
|
|
"2 3 Claire NaN\n",
|
|
"3 4 David NaN"
|
|
]
|
|
},
|
|
"execution_count": 233,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,how='left')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Right Join\n",
|
|
"**Match up AND include all rows from Right Table.**\n",
|
|
"**Show everyone who logged in on the Right Table, if they don't have registration info, then fill with NaN.**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 234,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name log_id\n",
|
|
"0 1.0 Andrew 2\n",
|
|
"1 2.0 Bobo 4\n",
|
|
"2 NaN Xavier 1\n",
|
|
"3 NaN Yolanda 3"
|
|
]
|
|
},
|
|
"execution_count": 234,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,how='right')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Outer Join\n",
|
|
"\n",
|
|
"**Match up on all info found in either Left or Right Table.**\n",
|
|
"**Show everyone that's in the Log in table and the registrations table. Fill any missing info with NaN**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 235,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>Claire</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>David</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name log_id\n",
|
|
"0 1.0 Andrew 2.0\n",
|
|
"1 2.0 Bobo 4.0\n",
|
|
"2 3.0 Claire NaN\n",
|
|
"3 4.0 David NaN\n",
|
|
"4 NaN Xavier 1.0\n",
|
|
"5 NaN Yolanda 3.0"
|
|
]
|
|
},
|
|
"execution_count": 235,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,how='outer')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Join on Index or Column\n",
|
|
"\n",
|
|
"**Use combinations of left_on,right_on,left_index,right_index to merge a column or index on each other**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 236,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Claire</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>David</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id name\n",
|
|
"0 1 Andrew\n",
|
|
"1 2 Bobo\n",
|
|
"2 3 Claire\n",
|
|
"3 4 David"
|
|
]
|
|
},
|
|
"execution_count": 236,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 237,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" log_id name\n",
|
|
"0 1 Xavier\n",
|
|
"1 2 Andrew\n",
|
|
"2 3 Yolanda\n",
|
|
"3 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 237,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"logins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 238,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"registrations = registrations.set_index(\"name\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 239,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>name</th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Andrew</th>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Bobo</th>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Claire</th>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>David</th>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id\n",
|
|
"name \n",
|
|
"Andrew 1\n",
|
|
"Bobo 2\n",
|
|
"Claire 3\n",
|
|
"David 4"
|
|
]
|
|
},
|
|
"execution_count": 239,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 240,
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id log_id name\n",
|
|
"1 1 2 Andrew\n",
|
|
"3 2 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 240,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,left_index=True,right_on='name')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 242,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" log_id name reg_id\n",
|
|
"1 2 Andrew 1\n",
|
|
"3 4 Bobo 2"
|
|
]
|
|
},
|
|
"execution_count": 242,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(logins,registrations,right_index=True,left_on='name')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Dealing with differing key column names in joined tables"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 243,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"registrations = registrations.reset_index()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 244,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>Claire</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>David</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" name reg_id\n",
|
|
"0 Andrew 1\n",
|
|
"1 Bobo 2\n",
|
|
"2 Claire 3\n",
|
|
"3 David 4"
|
|
]
|
|
},
|
|
"execution_count": 244,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 245,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" log_id name\n",
|
|
"0 1 Xavier\n",
|
|
"1 2 Andrew\n",
|
|
"2 3 Yolanda\n",
|
|
"3 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 245,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"logins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 246,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"registrations.columns = ['reg_name','reg_id']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 247,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_name</th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>Claire</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>David</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_name reg_id\n",
|
|
"0 Andrew 1\n",
|
|
"1 Bobo 2\n",
|
|
"2 Claire 3\n",
|
|
"3 David 4"
|
|
]
|
|
},
|
|
"execution_count": 247,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 248,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# ERROR\n",
|
|
"# pd.merge(registrations,logins)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 249,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_name</th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_name reg_id log_id name\n",
|
|
"0 Andrew 1 2 Andrew\n",
|
|
"1 Bobo 2 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 249,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,left_on='reg_name',right_on='name')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 250,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reg_id</th>\n",
|
|
" <th>log_id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reg_id log_id name\n",
|
|
"0 1 2 Andrew\n",
|
|
"1 2 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 250,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,left_on='reg_name',right_on='name').drop('reg_name',axis=1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Pandas automatically tags duplicate columns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 255,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"registrations.columns = ['name','id']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 256,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"logins.columns = ['id','name']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 257,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>id</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>Claire</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>David</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" name id\n",
|
|
"0 Andrew 1\n",
|
|
"1 Bobo 2\n",
|
|
"2 Claire 3\n",
|
|
"3 David 4"
|
|
]
|
|
},
|
|
"execution_count": 257,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"registrations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 258,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>id</th>\n",
|
|
" <th>name</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>Xavier</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>Andrew</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>Yolanda</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>Bobo</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" id name\n",
|
|
"0 1 Xavier\n",
|
|
"1 2 Andrew\n",
|
|
"2 3 Yolanda\n",
|
|
"3 4 Bobo"
|
|
]
|
|
},
|
|
"execution_count": 258,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"logins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 259,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>id_x</th>\n",
|
|
" <th>id_y</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" name id_x id_y\n",
|
|
"0 Andrew 1 2\n",
|
|
"1 Bobo 2 4"
|
|
]
|
|
},
|
|
"execution_count": 259,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# _x is for left\n",
|
|
"# _y is for right\n",
|
|
"pd.merge(registrations,logins,on='name')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 260,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>name</th>\n",
|
|
" <th>id_reg</th>\n",
|
|
" <th>id_log</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>Andrew</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>Bobo</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>4</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" name id_reg id_log\n",
|
|
"0 Andrew 1 2\n",
|
|
"1 Bobo 2 4"
|
|
]
|
|
},
|
|
"execution_count": 260,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pd.merge(registrations,logins,on='name',suffixes=('_reg','_log'))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"-----------\n",
|
|
"----------"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"anaconda-cloud": {},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|