You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1.0 MiB

<html> <head> </head>

___

Copyright by Pierian Data Inc. For more information, visit us at www.pieriandata.com

Capstone Project - Solution

Overview

If you are planning on going out to see a movie, how well can you trust online reviews and ratings? Especially if the same company showing the rating also makes money by selling movie tickets. Do they have a bias towards rating movies higher than they should be rated?

Goal:

Your goal is to complete the tasks below based off the 538 article and see if you reach a similar conclusion. You will need to use your pandas and visualization skills to determine if Fandango's ratings in 2015 had a bias towards rating movies better to sell more tickets.



Complete the tasks written in bold.



Part One: Understanding the Background and Data

TASK: Read this article: Be Suspicious Of Online Movie Ratings, Especially Fandangos


TASK: After reading the article, read these two tables giving an overview of the two .csv files we will be working with:

The Data

This is the data behind the story Be Suspicious Of Online Movie Ratings, Especially Fandangos openly available on 538's github: https://github.com/fivethirtyeight/data. There are two csv files, one with Fandango Stars and Displayed Ratings, and the other with aggregate data for movie ratings from other sites, like Metacritic,IMDB, and Rotten Tomatoes.

all_sites_scores.csv


all_sites_scores.csv contains every film that has a Rotten Tomatoes rating, a RT User rating, a Metacritic score, a Metacritic User score, and IMDb score, and at least 30 fan reviews on Fandango. The data from Fandango was pulled on Aug. 24, 2015.

Column Definition
FILM The film in question
RottenTomatoes The Rotten Tomatoes Tomatometer score for the film
RottenTomatoes_User The Rotten Tomatoes user score for the film
Metacritic The Metacritic critic score for the film
Metacritic_User The Metacritic user score for the film
IMDB The IMDb user score for the film
Metacritic_user_vote_count The number of user votes the film had on Metacritic
IMDB_user_vote_count The number of user votes the film had on IMDb


fandango_scape.csv

fandango_scrape.csv contains every film 538 pulled from Fandango.

Column Definiton
FILM The movie
STARS Number of stars presented on Fandango.com
RATING The Fandango ratingValue for the film, as pulled from the HTML of each page. This is the actual average score the movie obtained.
VOTES number of people who had reviewed the film at the time we pulled it.

TASK: Import any libraries you think you will use:

In [173]:
# IMPORT HERE!
In [174]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Part Two: Exploring Fandango Displayed Scores versus True User Ratings

Let's first explore the Fandango ratings to see if our analysis agrees with the article's conclusion.

TASK: Run the cell below to read in the fandango_scrape.csv file

In [175]:
fandango = pd.read_csv("fandango_scrape.csv")

TASK: Explore the DataFrame Properties and Head.

In [176]:
fandango.head()
Out[176]:
FILM STARS RATING VOTES
0 Fifty Shades of Grey (2015) 4.0 3.9 34846
1 Jurassic World (2015) 4.5 4.5 34390
2 American Sniper (2015) 5.0 4.8 34085
3 Furious 7 (2015) 5.0 4.8 33538
4 Inside Out (2015) 4.5 4.5 15749
In [177]:
fandango.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 504 entries, 0 to 503
Data columns (total 4 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   FILM    504 non-null    object 
 1   STARS   504 non-null    float64
 2   RATING  504 non-null    float64
 3   VOTES   504 non-null    int64  
dtypes: float64(2), int64(1), object(1)
memory usage: 15.9+ KB
In [178]:
fandango.describe()
Out[178]:
STARS RATING VOTES
count 504.000000 504.000000 504.000000
mean 3.558532 3.375794 1147.863095
std 1.563133 1.491223 3830.583136
min 0.000000 0.000000 0.000000
25% 3.500000 3.100000 3.000000
50% 4.000000 3.800000 18.500000
75% 4.500000 4.300000 189.750000
max 5.000000 5.000000 34846.000000

TASK: Let's explore the relationship between popularity of a film and its rating. Create a scatterplot showing the relationship between rating and votes. Feel free to edit visual styling to your preference.

In [179]:
# CODE HERE
In [180]:
plt.figure(figsize=(10,4),dpi=150)
sns.scatterplot(data=fandango,x='RATING',y='VOTES');

TASK: Calculate the correlation between the columns:

In [181]:
# CODE HERE
In [182]:
fandango.corr()
Out[182]:
STARS RATING VOTES
STARS 1.000000 0.994696 0.164218
RATING 0.994696 1.000000 0.163764
VOTES 0.164218 0.163764 1.000000

TASK: Assuming that every row in the FILM title column has the same format:

Film Title Name (Year)

Create a new column that is able to strip the year from the title strings and set this new column as YEAR

In [183]:
# CODE HERE
In [184]:
fandango['YEAR'] = fandango['FILM'].apply(lambda title:title.split('(')[-1])

TASK: How many movies are in the Fandango DataFrame per year?

In [185]:
#CODE HERE
In [186]:
fandango['YEAR'].value_counts()
Out[186]:
2015    478
2014     23
2016      1
1964      1
2012      1
Name: YEAR, dtype: int64

TASK: Visualize the count of movies per year with a plot:

In [187]:
#CODE HERE
In [188]:
sns.countplot(data=fandango,x='YEAR')
Out[188]:
<AxesSubplot:xlabel='YEAR', ylabel='count'>

TASK: What are the 10 movies with the highest number of votes?

In [189]:
#CODE HERE
In [190]:
fandango.nlargest(10,'VOTES')
Out[190]:
FILM STARS RATING VOTES YEAR
0 Fifty Shades of Grey (2015) 4.0 3.9 34846 2015
1 Jurassic World (2015) 4.5 4.5 34390 2015
2 American Sniper (2015) 5.0 4.8 34085 2015
3 Furious 7 (2015) 5.0 4.8 33538 2015
4 Inside Out (2015) 4.5 4.5 15749 2015
5 The Hobbit: The Battle of the Five Armies (2014) 4.5 4.3 15337 2014
6 Kingsman: The Secret Service (2015) 4.5 4.2 15205 2015
7 Minions (2015) 4.0 4.0 14998 2015
8 Avengers: Age of Ultron (2015) 5.0 4.5 14846 2015
9 Into the Woods (2014) 3.5 3.4 13055 2014

TASK: How many movies have zero votes?

In [191]:
#CODE HERE
In [192]:
no_votes = fandango['VOTES']==0 
no_votes.sum()
Out[192]:
69

TASK: Create DataFrame of only reviewed films by removing any films that have zero votes.

In [193]:
#CODE HERE
In [194]:
fan_reviewed = fandango[fandango['VOTES']>0]

As noted in the article, due to HTML and star rating displays, the true user rating may be slightly different than the rating shown to a user. Let's visualize this difference in distributions.

TASK: Create a KDE plot (or multiple kdeplots) that displays the distribution of ratings that are displayed (STARS) versus what the true rating was from votes (RATING). Clip the KDEs to 0-5.

In [195]:
#CODE HERE
In [196]:
plt.figure(figsize=(10,4),dpi=150)
sns.kdeplot(data=fan_reviewed,x='RATING',clip=[0,5],fill=True,label='True Rating')
sns.kdeplot(data=fan_reviewed,x='STARS',clip=[0,5],fill=True,label='Stars Displayed')

plt.legend(loc=(1.05,0.5))
Out[196]:
<matplotlib.legend.Legend at 0x1aa0110cdc8>

TASK: Let's now actually quantify this discrepancy. Create a new column of the different between STARS displayed versus true RATING. Calculate this difference with STARS-RATING and round these differences to the nearest decimal point.

In [197]:
#CODE HERE
In [198]:
fan_reviewed["STARS_DIFF"] = fan_reviewed['STARS'] - fan_reviewed['RATING'] 
fan_reviewed['STARS_DIFF'] = fan_reviewed['STARS_DIFF'].round(2)
In [199]:
fan_reviewed
Out[199]:
FILM STARS RATING VOTES YEAR STARS_DIFF
0 Fifty Shades of Grey (2015) 4.0 3.9 34846 2015 0.1
1 Jurassic World (2015) 4.5 4.5 34390 2015 0.0
2 American Sniper (2015) 5.0 4.8 34085 2015 0.2
3 Furious 7 (2015) 5.0 4.8 33538 2015 0.2
4 Inside Out (2015) 4.5 4.5 15749 2015 0.0
... ... ... ... ... ... ...
430 That Sugar Film (2015) 5.0 5.0 1 2015 0.0
431 The Intern (2015) 5.0 5.0 1 2015 0.0
432 The Park Bench (2015) 5.0 5.0 1 2015 0.0
433 The Wanted 18 (2015) 5.0 5.0 1 2015 0.0
434 Z For Zachariah (2015) 5.0 5.0 1 2015 0.0

435 rows × 6 columns

TASK: Create a count plot to display the number of times a certain difference occurs:

In [200]:
#CODE HERE
In [201]:
plt.figure(figsize=(12,4),dpi=150)
sns.countplot(data=fan_reviewed,x='STARS_DIFF',palette='magma')
Out[201]:
<AxesSubplot:xlabel='STARS_DIFF', ylabel='count'>

TASK: We can see from the plot that one movie was displaying over a 1 star difference than its true rating! What movie had this close to 1 star differential?

In [202]:
#CODE HERE
In [203]:
fan_reviewed[fan_reviewed['STARS_DIFF'] == 1]
Out[203]:
FILM STARS RATING VOTES YEAR STARS_DIFF
381 Turbo Kid (2015) 5.0 4.0 2 2015 1.0

Part Three: Comparison of Fandango Ratings to Other Sites

Let's now compare the scores from Fandango to other movies sites and see how they compare.

TASK: Read in the "all_sites_scores.csv" file by running the cell below

In [204]:
all_sites = pd.read_csv("all_sites_scores.csv")

TASK: Explore the DataFrame columns, info, description.

In [ ]:

In [205]:
all_sites.head()
Out[205]:
FILM RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count
0 Avengers: Age of Ultron (2015) 74 86 66 7.1 7.8 1330 271107
1 Cinderella (2015) 85 80 67 7.5 7.1 249 65709
2 Ant-Man (2015) 80 90 64 8.1 7.8 627 103660
3 Do You Believe? (2015) 18 84 22 4.7 5.4 31 3136
4 Hot Tub Time Machine 2 (2015) 14 28 29 3.4 5.1 88 19560
In [206]:
all_sites.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 146 entries, 0 to 145
Data columns (total 8 columns):
 #   Column                      Non-Null Count  Dtype  
---  ------                      --------------  -----  
 0   FILM                        146 non-null    object 
 1   RottenTomatoes              146 non-null    int64  
 2   RottenTomatoes_User         146 non-null    int64  
 3   Metacritic                  146 non-null    int64  
 4   Metacritic_User             146 non-null    float64
 5   IMDB                        146 non-null    float64
 6   Metacritic_user_vote_count  146 non-null    int64  
 7   IMDB_user_vote_count        146 non-null    int64  
dtypes: float64(2), int64(5), object(1)
memory usage: 9.2+ KB
In [207]:
all_sites.describe()
Out[207]:
RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count
count 146.000000 146.000000 146.000000 146.000000 146.000000 146.000000 146.000000
mean 60.849315 63.876712 58.808219 6.519178 6.736986 185.705479 42846.205479
std 30.168799 20.024430 19.517389 1.510712 0.958736 316.606515 67406.509171
min 5.000000 20.000000 13.000000 2.400000 4.000000 4.000000 243.000000
25% 31.250000 50.000000 43.500000 5.700000 6.300000 33.250000 5627.000000
50% 63.500000 66.500000 59.000000 6.850000 6.900000 72.500000 19103.000000
75% 89.000000 81.000000 75.000000 7.500000 7.400000 168.500000 45185.750000
max 100.000000 94.000000 94.000000 9.600000 8.600000 2375.000000 334164.000000

Rotten Tomatoes

Let's first take a look at Rotten Tomatoes. RT has two sets of reviews, their critics reviews (ratings published by official critics) and user reviews.

TASK: Create a scatterplot exploring the relationship between RT Critic reviews and RT User reviews.

In [208]:
# CODE HERE
In [209]:
plt.figure(figsize=(10,4),dpi=150)
sns.scatterplot(data=all_sites,x='RottenTomatoes',y='RottenTomatoes_User')
plt.xlim(0,100)
plt.ylim(0,100)
Out[209]:
(0.0, 100.0)

Let's quantify this difference by comparing the critics ratings and the RT User ratings. We will calculate this with RottenTomatoes-RottenTomatoes_User. Note: Rotten_Diff here is Critics - User Score. So values closer to 0 means aggrement between Critics and Users. Larger positive values means critics rated much higher than users. Larger negative values means users rated much higher than critics.

TASK: Create a new column based off the difference between critics ratings and users ratings for Rotten Tomatoes. Calculate this with RottenTomatoes-RottenTomatoes_User

In [210]:
#CODE HERE
In [211]:
all_sites['Rotten_Diff']  = all_sites['RottenTomatoes'] - all_sites['RottenTomatoes_User']

Let's now compare the overall mean difference. Since we're dealing with differences that could be negative or positive, first take the absolute value of all the differences, then take the mean. This would report back on average to absolute difference between the critics rating versus the user rating.

TASK: Calculate the Mean Absolute Difference between RT scores and RT User scores as described above.

In [212]:
# CODE HERE
In [213]:
all_sites['Rotten_Diff'].apply(abs).mean()
Out[213]:
15.095890410958905

TASK: Plot the distribution of the differences between RT Critics Score and RT User Score. There should be negative values in this distribution plot. Feel free to use KDE or Histograms to display this distribution.

In [214]:
#CODE HERE
In [215]:
plt.figure(figsize=(10,4),dpi=200)
sns.histplot(data=all_sites,x='Rotten_Diff',kde=True,bins=25)
plt.title("RT Critics Score minus RT User Score");

TASK: Now create a distribution showing the absolute value difference between Critics and Users on Rotten Tomatoes.

In [216]:
#CODE HERE
In [217]:
plt.figure(figsize=(10,4),dpi=200)
sns.histplot(x=all_sites['Rotten_Diff'].apply(abs),bins=25,kde=True)
plt.title("Abs Difference between RT Critics Score and RT User Score");

Let's find out which movies are causing the largest differences. First, show the top 5 movies with the largest negative difference between Users and RT critics. Since we calculated the difference as Critics Rating - Users Rating, then large negative values imply the users rated the movie much higher on average than the critics did.

TASK: What are the top 5 movies users rated higher than critics on average:

In [218]:
# CODE HERE
In [219]:
print("Users Love but Critics Hate")
all_sites.nsmallest(5,'Rotten_Diff')[['FILM','Rotten_Diff']]
Users Love but Critics Hate
Out[219]:
FILM Rotten_Diff
3 Do You Believe? (2015) -66
85 Little Boy (2015) -61
105 Hitman: Agent 47 (2015) -42
134 The Longest Ride (2015) -42
125 The Wedding Ringer (2015) -39

TASK: Now show the top 5 movies critics scores higher than users on average.

In [220]:
# CODE HERE
In [221]:
print("Critics love, but Users Hate")
all_sites.nlargest(5,'Rotten_Diff')[['FILM','Rotten_Diff']]
Critics love, but Users Hate
Out[221]:
FILM Rotten_Diff
69 Mr. Turner (2014) 42
112 It Follows (2015) 31
115 While We're Young (2015) 31
37 Welcome to Me (2015) 24
40 I'll See You In My Dreams (2015) 24

MetaCritic

Now let's take a quick look at the ratings from MetaCritic. Metacritic also shows an average user rating versus their official displayed rating.

TASK: Display a scatterplot of the Metacritic Rating versus the Metacritic User rating.

In [222]:
# CODE HERE
In [223]:
plt.figure(figsize=(10,4),dpi=150)
sns.scatterplot(data=all_sites,x='Metacritic',y='Metacritic_User')
plt.xlim(0,100)
plt.ylim(0,10)
Out[223]:
(0.0, 10.0)

IMBD

Finally let's explore IMDB. Notice that both Metacritic and IMDB report back vote counts. Let's analyze the most popular movies.

TASK: Create a scatterplot for the relationship between vote counts on MetaCritic versus vote counts on IMDB.

In [224]:
#CODE HERE
In [225]:
plt.figure(figsize=(10,4),dpi=150)
sns.scatterplot(data=all_sites,x='Metacritic_user_vote_count',y='IMDB_user_vote_count')
Out[225]:
<AxesSubplot:xlabel='Metacritic_user_vote_count', ylabel='IMDB_user_vote_count'>

Notice there are two outliers here. The movie with the highest vote count on IMDB only has about 500 Metacritic ratings. What is this movie?

TASK: What movie has the highest IMDB user vote count?

In [226]:
#CODE HERE
In [227]:
all_sites.nlargest(1,'IMDB_user_vote_count')
Out[227]:
FILM RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count Rotten_Diff
14 The Imitation Game (2014) 90 92 73 8.2 8.1 566 334164 -2

TASK: What movie has the highest Metacritic User Vote count?

In [228]:
#CODE HERE
In [229]:
all_sites.nlargest(1,'Metacritic_user_vote_count')
Out[229]:
FILM RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count Rotten_Diff
88 Mad Max: Fury Road (2015) 97 88 89 8.7 8.3 2375 292023 9

Fandago Scores vs. All Sites

Finally let's begin to explore whether or not Fandango artificially displays higher ratings than warranted to boost ticket sales.

TASK: Combine the Fandango Table with the All Sites table. Not every movie in the Fandango table is in the All Sites table, since some Fandango movies have very little or no reviews. We only want to compare movies that are in both DataFrames, so do an inner merge to merge together both DataFrames based on the FILM columns.

In [230]:
#CODE HERE
In [231]:
df = pd.merge(fandango,all_sites,on='FILM',how='inner')
In [232]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 145 entries, 0 to 144
Data columns (total 13 columns):
 #   Column                      Non-Null Count  Dtype  
---  ------                      --------------  -----  
 0   FILM                        145 non-null    object 
 1   STARS                       145 non-null    float64
 2   RATING                      145 non-null    float64
 3   VOTES                       145 non-null    int64  
 4   YEAR                        145 non-null    object 
 5   RottenTomatoes              145 non-null    int64  
 6   RottenTomatoes_User         145 non-null    int64  
 7   Metacritic                  145 non-null    int64  
 8   Metacritic_User             145 non-null    float64
 9   IMDB                        145 non-null    float64
 10  Metacritic_user_vote_count  145 non-null    int64  
 11  IMDB_user_vote_count        145 non-null    int64  
 12  Rotten_Diff                 145 non-null    int64  
dtypes: float64(4), int64(7), object(2)
memory usage: 15.9+ KB
In [233]:
df.head()
Out[233]:
FILM STARS RATING VOTES YEAR RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count Rotten_Diff
0 Fifty Shades of Grey (2015) 4.0 3.9 34846 2015 25 42 46 3.2 4.2 778 179506 -17
1 Jurassic World (2015) 4.5 4.5 34390 2015 71 81 59 7.0 7.3 1281 241807 -10
2 American Sniper (2015) 5.0 4.8 34085 2015 72 85 72 6.6 7.4 850 251856 -13
3 Furious 7 (2015) 5.0 4.8 33538 2015 81 84 67 6.8 7.4 764 207211 -3
4 Inside Out (2015) 4.5 4.5 15749 2015 98 90 94 8.9 8.6 807 96252 8

Normalize columns to Fandango STARS and RATINGS 0-5

Notice that RT,Metacritic, and IMDB don't use a score between 0-5 stars like Fandango does. In order to do a fair comparison, we need to normalize these values so they all fall between 0-5 stars and the relationship between reviews stays the same.

TASK: Create new normalized columns for all ratings so they match up within the 0-5 star range shown on Fandango. There are many ways to do this.

Hint link: https://stackoverflow.com/questions/26414913/normalize-columns-of-pandas-data-frame

Easier Hint:

Keep in mind, a simple way to convert ratings:

  • 100/20 = 5
  • 10/2 = 5
In [234]:
# CODE HERE
In [235]:
# Dont run this cell multiple times, otherwise you keep dividing!
df['RT_Norm'] = np.round(df['RottenTomatoes']/20,1)
df['RTU_Norm'] =  np.round(df['RottenTomatoes_User']/20,1)
In [236]:
# Dont run this cell multiple times, otherwise you keep dividing!
df['Meta_Norm'] =  np.round(df['Metacritic']/20,1)
df['Meta_U_Norm'] =  np.round(df['Metacritic_User']/2,1)
In [237]:
# Dont run this cell multiple times, otherwise you keep dividing!
df['IMDB_Norm'] = np.round(df['IMDB']/2,1)
In [238]:
df.head()
Out[238]:
FILM STARS RATING VOTES YEAR RottenTomatoes RottenTomatoes_User Metacritic Metacritic_User IMDB Metacritic_user_vote_count IMDB_user_vote_count Rotten_Diff RT_Norm RTU_Norm Meta_Norm Meta_U_Norm IMDB_Norm
0 Fifty Shades of Grey (2015) 4.0 3.9 34846 2015 25 42 46 3.2 4.2 778 179506 -17 1.2 2.1 2.3 1.6 2.1
1 Jurassic World (2015) 4.5 4.5 34390 2015 71 81 59 7.0 7.3 1281 241807 -10 3.6 4.0 3.0 3.5 3.6
2 American Sniper (2015) 5.0 4.8 34085 2015 72 85 72 6.6 7.4 850 251856 -13 3.6 4.2 3.6 3.3 3.7
3 Furious 7 (2015) 5.0 4.8 33538 2015 81 84 67 6.8 7.4 764 207211 -3 4.0 4.2 3.4 3.4 3.7
4 Inside Out (2015) 4.5 4.5 15749 2015 98 90 94 8.9 8.6 807 96252 8 4.9 4.5 4.7 4.4 4.3

TASK: Now create a norm_scores DataFrame that only contains the normalizes ratings. Include both STARS and RATING from the original Fandango table.

In [239]:
#CODE HERE
In [240]:
norm_scores = df[['STARS','RATING','RT_Norm','RTU_Norm','Meta_Norm','Meta_U_Norm','IMDB_Norm']]
In [241]:
norm_scores.head()
Out[241]:
STARS RATING RT_Norm RTU_Norm Meta_Norm Meta_U_Norm IMDB_Norm
0 4.0 3.9 1.2 2.1 2.3 1.6 2.1
1 4.5 4.5 3.6 4.0 3.0 3.5 3.6
2 5.0 4.8 3.6 4.2 3.6 3.3 3.7
3 5.0 4.8 4.0 4.2 3.4 3.4 3.7
4 4.5 4.5 4.9 4.5 4.7 4.4 4.3

Comparing Distribution of Scores Across Sites

Now the moment of truth! Does Fandango display abnormally high ratings? We already know it pushs displayed RATING higher than STARS, but are the ratings themselves higher than average?

TASK: Create a plot comparing the distributions of normalized ratings across all sites. There are many ways to do this, but explore the Seaborn KDEplot docs for some simple ways to quickly show this. Don't worry if your plot format does not look exactly the same as ours, as long as the differences in distribution are clear.

Quick Note if you have issues moving the legend for a seaborn kdeplot: https://github.com/mwaskom/seaborn/issues/2280

In [242]:
#CODE HERE
In [243]:
def move_legend(ax, new_loc, **kws):
    old_legend = ax.legend_
    handles = old_legend.legendHandles
    labels = [t.get_text() for t in old_legend.get_texts()]
    title = old_legend.get_title().get_text()
    ax.legend(handles, labels, loc=new_loc, title=title, **kws)
In [244]:
fig, ax = plt.subplots(figsize=(15,6),dpi=150)
sns.kdeplot(data=norm_scores,clip=[0,5],shade=True,palette='Set1',ax=ax)
move_legend(ax, "upper left")

Clearly Fandango has an uneven distribution. We can also see that RT critics have the most uniform distribution. Let's directly compare these two.

TASK: Create a KDE plot that compare the distribution of RT critic ratings against the STARS displayed by Fandango.

In [ ]:
#CODE HERE
In [167]:
fig, ax = plt.subplots(figsize=(15,6),dpi=150)
sns.kdeplot(data=norm_scores[['RT_Norm','STARS']],clip=[0,5],shade=True,palette='Set1',ax=ax)
move_legend(ax, "upper left")

OPTIONAL TASK: Create a histplot comparing all normalized scores.

In [ ]:
#CODE HERE
In [168]:
plt.subplots(figsize=(15,6),dpi=150)
sns.histplot(norm_scores,bins=50)
Out[168]:
<AxesSubplot:ylabel='Count'>

How are the worst movies rated across all platforms?

TASK: Create a clustermap visualization of all normalized scores. Note the differences in ratings, highly rated movies should be clustered together versus poorly rated movies. Note: This clustermap does not need to have the FILM titles as the index, feel free to drop it for the clustermap.

In [ ]:
# CODE HERE
In [169]:
sns.clustermap(norm_scores,cmap='magma',col_cluster=False)
Out[169]:
<seaborn.matrix.ClusterGrid at 0x1aa7cb2b548>

TASK: Clearly Fandango is rating movies much higher than other sites, especially considering that it is then displaying a rounded up version of the rating. Let's examine the top 10 worst movies. Based off the Rotten Tomatoes Critic Ratings, what are the top 10 lowest rated movies? What are the normalized scores across all platforms for these movies? You may need to add the FILM column back in to your DataFrame of normalized scores to see the results.

In [245]:
# CODE HERE
In [246]:
norm_films = df[['STARS','RATING','RT_Norm','RTU_Norm','Meta_Norm','Meta_U_Norm','IMDB_Norm','FILM']]
In [248]:
norm_films.nsmallest(10,'RT_Norm')
Out[248]:
STARS RATING RT_Norm RTU_Norm Meta_Norm Meta_U_Norm IMDB_Norm FILM
49 3.5 3.5 0.2 1.8 0.6 1.2 2.2 Paul Blart: Mall Cop 2 (2015)
25 4.5 4.1 0.4 2.3 1.3 2.3 3.0 Taken 3 (2015)
28 3.0 2.7 0.4 1.0 1.4 1.2 2.0 Fantastic Four (2015)
54 4.0 3.7 0.4 1.8 1.6 1.8 2.4 Hot Pursuit (2015)
84 4.0 3.9 0.4 2.4 1.4 1.6 3.0 Hitman: Agent 47 (2015)
50 4.0 3.6 0.5 1.8 1.5 2.8 2.3 The Boy Next Door (2015)
77 3.5 3.2 0.6 1.8 1.5 2.0 2.8 Seventh Son (2015)
78 3.5 3.2 0.6 1.5 1.4 1.6 2.8 Mortdecai (2015)
83 3.5 3.3 0.6 1.7 1.6 2.5 2.8 Sinister 2 (2015)
87 3.5 3.2 0.6 1.4 1.6 1.9 2.7 Unfinished Business (2015)

FINAL TASK: Visualize the distribution of ratings across all sites for the top 10 worst movies.

In [ ]:
# CODE HERE
In [251]:
print('\n\n')
plt.figure(figsize=(15,6),dpi=150)
worst_films = norm_films.nsmallest(10,'RT_Norm').drop('FILM',axis=1)
sns.kdeplot(data=worst_films,clip=[0,5],shade=True,palette='Set1')
plt.title("Ratings for RT Critic's 10 Worst Reviewed Films");




Final thoughts: Wow! Fandango is showing around 3-4 star ratings for films that are clearly bad! Notice the biggest offender, Taken 3!. Fandango is displaying 4.5 stars on their site for a film with an average rating of 1.86 across the other platforms!

In [253]:
norm_films.iloc[25]
Out[253]:
STARS                     4.5
RATING                    4.1
RT_Norm                   0.4
RTU_Norm                  2.3
Meta_Norm                 1.3
Meta_U_Norm               2.3
IMDB_Norm                   3
FILM           Taken 3 (2015)
Name: 25, dtype: object
In [254]:
0.4+2.3+1.3+2.3+3
Out[254]:
9.3
In [255]:
9.3/5
Out[255]:
1.86

</html>