You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 KiB
190 KiB
<html>
<head>
</head>
</html>
Conditional Filtering¶
Imports¶
In [1]:
import numpy as np
import pandas as pd
In [2]:
df = pd.read_csv('tips.csv')
In [5]:
df.head()
Out[5]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 | 8.49 | Christy Cunningham | 3560325168603410 | Sun2959 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 | 3.45 | Douglas Tucker | 4478071379779230 | Sun4608 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 | 7.00 | Travis Walters | 6011812112971322 | Sun4458 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 | 11.84 | Nathaniel Harris | 4676137647685994 | Sun5260 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 | 6.15 | Tonya Carter | 4832732618637221 | Sun2251 |
Conditions¶
In [12]:
# df['total_bill'] > 30
In [10]:
bool_series = df['total_bill'] > 30
In [11]:
df[bool_series]
Out[11]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
39 | 31.27 | 5.00 | Male | No | Sat | Dinner | 3 | 10.42 | Mr. Brandon Berry | 6011525851069856 | Sat6373 |
44 | 30.40 | 5.60 | Male | No | Sun | Dinner | 4 | 7.60 | Todd Cooper | 503846761263 | Sun2274 |
47 | 32.40 | 6.00 | Male | No | Sun | Dinner | 4 | 8.10 | James Barnes | 3552002592874186 | Sun9677 |
52 | 34.81 | 5.20 | Female | No | Sun | Dinner | 4 | 8.70 | Emily Daniel | 4291280793094374 | Sun6165 |
56 | 38.01 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.50 | James Christensen DDS | 349793629453226 | Sat8903 |
59 | 48.27 | 6.73 | Male | No | Sat | Dinner | 4 | 12.07 | Brian Ortiz | 6596453823950595 | Sat8139 |
83 | 32.68 | 5.00 | Male | Yes | Thur | Lunch | 2 | 16.34 | Daniel Murphy | 5356177501009133 | Thur8801 |
85 | 34.83 | 5.17 | Female | No | Thur | Lunch | 4 | 8.71 | Shawna Cook | 6011787464177340 | Thur7972 |
95 | 40.17 | 4.73 | Male | Yes | Fri | Dinner | 4 | 10.04 | Aaron Bentley | 180026611638690 | Fri9628 |
102 | 44.30 | 2.50 | Female | Yes | Sat | Dinner | 3 | 14.77 | Heather Cohen | 379771118886604 | Sat6240 |
112 | 38.07 | 4.00 | Male | No | Sun | Dinner | 3 | 12.69 | Jeff Lopez | 3572865915176463 | Sun591 |
141 | 34.30 | 6.70 | Male | No | Thur | Lunch | 6 | 5.72 | Steven Carlson | 3526515703718508 | Thur1025 |
142 | 41.19 | 5.00 | Male | No | Thur | Lunch | 5 | 8.24 | Eric Andrews | 4356531761046453 | Thur3621 |
156 | 48.17 | 5.00 | Male | No | Sun | Dinner | 6 | 8.03 | Ryan Gonzales | 3523151482063321 | Sun7518 |
167 | 31.71 | 4.50 | Male | No | Sun | Dinner | 4 | 7.93 | Michael Lawson | 3566285921227119 | Sun3719 |
170 | 50.81 | 10.00 | Male | Yes | Sat | Dinner | 3 | 16.94 | Gregory Clark | 5473850968388236 | Sat1954 |
173 | 31.85 | 3.18 | Male | Yes | Sun | Dinner | 2 | 15.92 | Scott Perez | 3577115550328507 | Sun9335 |
175 | 32.90 | 3.11 | Male | Yes | Sun | Dinner | 2 | 16.45 | Nathan Reynolds | 370307040837149 | Sun5109 |
179 | 34.63 | 3.55 | Male | Yes | Sun | Dinner | 2 | 17.32 | Brian Bailey | 346656312114848 | Sun9851 |
180 | 34.65 | 3.68 | Male | Yes | Sun | Dinner | 4 | 8.66 | James Hebert DDS | 676168737648 | Sun7544 |
182 | 45.35 | 3.50 | Male | Yes | Sun | Dinner | 3 | 15.12 | Jose Parsons | 4112207559459910 | Sun2337 |
184 | 40.55 | 3.00 | Male | Yes | Sun | Dinner | 2 | 20.27 | Stephen Cox | 3547798222044029 | Sun5140 |
187 | 30.46 | 2.00 | Male | Yes | Sun | Dinner | 5 | 6.09 | David Barrett | 4792882899700988 | Sun9987 |
197 | 43.11 | 5.00 | Female | Yes | Thur | Lunch | 4 | 10.78 | Brooke Soto | 5544902205760175 | Thur9313 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
In [13]:
df[df['total_bill']>30]
Out[13]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
39 | 31.27 | 5.00 | Male | No | Sat | Dinner | 3 | 10.42 | Mr. Brandon Berry | 6011525851069856 | Sat6373 |
44 | 30.40 | 5.60 | Male | No | Sun | Dinner | 4 | 7.60 | Todd Cooper | 503846761263 | Sun2274 |
47 | 32.40 | 6.00 | Male | No | Sun | Dinner | 4 | 8.10 | James Barnes | 3552002592874186 | Sun9677 |
52 | 34.81 | 5.20 | Female | No | Sun | Dinner | 4 | 8.70 | Emily Daniel | 4291280793094374 | Sun6165 |
56 | 38.01 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.50 | James Christensen DDS | 349793629453226 | Sat8903 |
59 | 48.27 | 6.73 | Male | No | Sat | Dinner | 4 | 12.07 | Brian Ortiz | 6596453823950595 | Sat8139 |
83 | 32.68 | 5.00 | Male | Yes | Thur | Lunch | 2 | 16.34 | Daniel Murphy | 5356177501009133 | Thur8801 |
85 | 34.83 | 5.17 | Female | No | Thur | Lunch | 4 | 8.71 | Shawna Cook | 6011787464177340 | Thur7972 |
95 | 40.17 | 4.73 | Male | Yes | Fri | Dinner | 4 | 10.04 | Aaron Bentley | 180026611638690 | Fri9628 |
102 | 44.30 | 2.50 | Female | Yes | Sat | Dinner | 3 | 14.77 | Heather Cohen | 379771118886604 | Sat6240 |
112 | 38.07 | 4.00 | Male | No | Sun | Dinner | 3 | 12.69 | Jeff Lopez | 3572865915176463 | Sun591 |
141 | 34.30 | 6.70 | Male | No | Thur | Lunch | 6 | 5.72 | Steven Carlson | 3526515703718508 | Thur1025 |
142 | 41.19 | 5.00 | Male | No | Thur | Lunch | 5 | 8.24 | Eric Andrews | 4356531761046453 | Thur3621 |
156 | 48.17 | 5.00 | Male | No | Sun | Dinner | 6 | 8.03 | Ryan Gonzales | 3523151482063321 | Sun7518 |
167 | 31.71 | 4.50 | Male | No | Sun | Dinner | 4 | 7.93 | Michael Lawson | 3566285921227119 | Sun3719 |
170 | 50.81 | 10.00 | Male | Yes | Sat | Dinner | 3 | 16.94 | Gregory Clark | 5473850968388236 | Sat1954 |
173 | 31.85 | 3.18 | Male | Yes | Sun | Dinner | 2 | 15.92 | Scott Perez | 3577115550328507 | Sun9335 |
175 | 32.90 | 3.11 | Male | Yes | Sun | Dinner | 2 | 16.45 | Nathan Reynolds | 370307040837149 | Sun5109 |
179 | 34.63 | 3.55 | Male | Yes | Sun | Dinner | 2 | 17.32 | Brian Bailey | 346656312114848 | Sun9851 |
180 | 34.65 | 3.68 | Male | Yes | Sun | Dinner | 4 | 8.66 | James Hebert DDS | 676168737648 | Sun7544 |
182 | 45.35 | 3.50 | Male | Yes | Sun | Dinner | 3 | 15.12 | Jose Parsons | 4112207559459910 | Sun2337 |
184 | 40.55 | 3.00 | Male | Yes | Sun | Dinner | 2 | 20.27 | Stephen Cox | 3547798222044029 | Sun5140 |
187 | 30.46 | 2.00 | Male | Yes | Sun | Dinner | 5 | 6.09 | David Barrett | 4792882899700988 | Sun9987 |
197 | 43.11 | 5.00 | Female | Yes | Thur | Lunch | 4 | 10.78 | Brooke Soto | 5544902205760175 | Thur9313 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
In [14]:
df[df['sex'] == 'Male']
Out[14]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 | 3.45 | Douglas Tucker | 4478071379779230 | Sun4608 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 | 7.00 | Travis Walters | 6011812112971322 | Sun4458 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 | 11.84 | Nathaniel Harris | 4676137647685994 | Sun5260 |
5 | 25.29 | 4.71 | Male | No | Sun | Dinner | 4 | 6.32 | Erik Smith | 213140353657882 | Sun9679 |
6 | 8.77 | 2.00 | Male | No | Sun | Dinner | 2 | 4.38 | Kristopher Johnson | 2223727524230344 | Sun5985 |
7 | 26.88 | 3.12 | Male | No | Sun | Dinner | 4 | 6.72 | Robert Buck | 3514785077705092 | Sun8157 |
8 | 15.04 | 1.96 | Male | No | Sun | Dinner | 2 | 7.52 | Joseph Mcdonald | 3522866365840377 | Sun6820 |
9 | 14.78 | 3.23 | Male | No | Sun | Dinner | 2 | 7.39 | Jerome Abbott | 3532124519049786 | Sun3775 |
10 | 10.27 | 1.71 | Male | No | Sun | Dinner | 2 | 5.14 | William Riley | 566287581219 | Sun2546 |
12 | 15.42 | 1.57 | Male | No | Sun | Dinner | 2 | 7.71 | Chad Harrington | 577040572932 | Sun1300 |
13 | 18.43 | 3.00 | Male | No | Sun | Dinner | 4 | 4.61 | Joshua Jones | 6011163105616890 | Sun2971 |
15 | 21.58 | 3.92 | Male | No | Sun | Dinner | 2 | 10.79 | Matthew Reilly | 180073029785069 | Sun1878 |
17 | 16.29 | 3.71 | Male | No | Sun | Dinner | 3 | 5.43 | John Pittman | 6521340257218708 | Sun2998 |
19 | 20.65 | 3.35 | Male | No | Sat | Dinner | 3 | 6.88 | Timothy Oneal | 6568069240986485 | Sat9213 |
20 | 17.92 | 4.08 | Male | No | Sat | Dinner | 2 | 8.96 | Thomas Rice | 4403296224639756 | Sat1709 |
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
24 | 19.82 | 3.18 | Male | No | Sat | Dinner | 2 | 9.91 | Christopher Ross | 36739148167928 | Sat6236 |
25 | 17.81 | 2.34 | Male | No | Sat | Dinner | 4 | 4.45 | Robert Perkins | 30502930499388 | Sat907 |
26 | 13.37 | 2.00 | Male | No | Sat | Dinner | 2 | 6.68 | Kyle Avery | 6531339539615499 | Sat6651 |
27 | 12.69 | 2.00 | Male | No | Sat | Dinner | 2 | 6.34 | Patrick Barber | 30155551880343 | Sat394 |
28 | 21.70 | 4.30 | Male | No | Sat | Dinner | 2 | 10.85 | David Collier | 5529694315416009 | Sat3697 |
30 | 9.55 | 1.45 | Male | No | Sat | Dinner | 2 | 4.78 | Grant Hall | 30196517521548 | Sat4099 |
31 | 18.35 | 2.50 | Male | No | Sat | Dinner | 4 | 4.59 | Danny Santiago | 630415546013 | Sat4947 |
34 | 17.78 | 3.27 | Male | No | Sat | Dinner | 2 | 8.89 | Jacob Castillo | 3551492000704805 | Sat8124 |
35 | 24.06 | 3.60 | Male | No | Sat | Dinner | 3 | 8.02 | Joseph Mullins | 5519770449260299 | Sat632 |
36 | 16.31 | 2.00 | Male | No | Sat | Dinner | 3 | 5.44 | William Ford | 3527691170179398 | Sat9139 |
38 | 18.69 | 2.31 | Male | No | Sat | Dinner | 3 | 6.23 | Brandon Bradley | 4427601595688633 | Sat4056 |
39 | 31.27 | 5.00 | Male | No | Sat | Dinner | 3 | 10.42 | Mr. Brandon Berry | 6011525851069856 | Sat6373 |
40 | 16.04 | 2.24 | Male | No | Sat | Dinner | 3 | 5.35 | Adam Edwards | 3544447755679420 | Sat8549 |
41 | 17.46 | 2.54 | Male | No | Sun | Dinner | 2 | 8.73 | David Boyer | 3536678244278149 | Sun9460 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
195 | 7.56 | 1.44 | Male | No | Thur | Lunch | 2 | 3.78 | Michael White | 4865390263095532 | Thur697 |
196 | 10.34 | 2.00 | Male | Yes | Thur | Lunch | 2 | 5.17 | Eric Martin | 30442491190342 | Thur9862 |
199 | 13.51 | 2.00 | Male | Yes | Thur | Lunch | 2 | 6.76 | Joseph Murphy MD | 6547218923471275 | Thur2428 |
200 | 18.71 | 4.00 | Male | Yes | Thur | Lunch | 3 | 6.24 | Jason Conrad | 4581233003487 | Thur6048 |
204 | 20.53 | 4.00 | Male | Yes | Thur | Lunch | 4 | 5.13 | Scott Kim | 3570611756827620 | Thur2160 |
206 | 26.59 | 3.41 | Male | Yes | Sat | Dinner | 3 | 8.86 | Daniel Owens | 38971087967574 | Sat1 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
208 | 24.27 | 2.03 | Male | Yes | Sat | Dinner | 2 | 12.14 | Jason Carter | 4268942915626180 | Sat6048 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
211 | 25.89 | 5.16 | Male | Yes | Sat | Dinner | 4 | 6.47 | Christopher Li | 6011962464150569 | Sat6735 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
216 | 28.15 | 3.00 | Male | Yes | Sat | Dinner | 5 | 5.63 | Shawn Barnett PhD | 4590982568244 | Sat7320 |
217 | 11.59 | 1.50 | Male | Yes | Sat | Dinner | 2 | 5.80 | Gary Orr | 30324521283406 | Sat8489 |
218 | 7.74 | 1.44 | Male | Yes | Sat | Dinner | 2 | 3.87 | Nicholas Archer | 340517153733524 | Sat4772 |
220 | 12.16 | 2.20 | Male | Yes | Fri | Lunch | 2 | 6.08 | Ricky Johnson | 213109508670736 | Fri4607 |
222 | 8.58 | 1.92 | Male | Yes | Fri | Lunch | 1 | 8.58 | Jason Lawrence | 3505302934650403 | Fri6624 |
224 | 13.42 | 1.58 | Male | Yes | Fri | Lunch | 2 | 6.71 | Ronald Vaughn DVM | 341503466406403 | Fri5959 |
227 | 20.45 | 3.00 | Male | No | Sat | Dinner | 4 | 5.11 | Robert Bradley | 213141668145910 | Sat4319 |
228 | 13.28 | 2.72 | Male | No | Sat | Dinner | 2 | 6.64 | Glenn Jones | 502061651712 | Sat2937 |
230 | 24.01 | 2.00 | Male | Yes | Sat | Dinner | 4 | 6.00 | Michael Osborne | 4258682154026 | Sat7872 |
231 | 15.69 | 3.00 | Male | Yes | Sat | Dinner | 3 | 5.23 | Jason Parks | 4812333796161 | Sat6334 |
232 | 11.61 | 3.39 | Male | No | Sat | Dinner | 2 | 5.80 | James Taylor | 6011482917327995 | Sat2124 |
233 | 10.77 | 1.47 | Male | No | Sat | Dinner | 2 | 5.38 | Paul Novak | 6011698897610858 | Sat1467 |
234 | 15.53 | 3.00 | Male | Yes | Sat | Dinner | 2 | 7.76 | Tracy Douglas | 4097938155941930 | Sat7220 |
235 | 10.07 | 1.25 | Male | No | Sat | Dinner | 2 | 5.04 | Sean Gonzalez | 3534021246117605 | Sat4615 |
236 | 12.60 | 1.00 | Male | Yes | Sat | Dinner | 2 | 6.30 | Matthew Myers | 3543676378973965 | Sat5032 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
239 | 29.03 | 5.92 | Male | No | Sat | Dinner | 3 | 9.68 | Michael Avila | 5296068606052842 | Sat2657 |
241 | 22.67 | 2.00 | Male | Yes | Sat | Dinner | 2 | 11.34 | Keith Wong | 6011891618747196 | Sat3880 |
242 | 17.82 | 1.75 | Male | No | Sat | Dinner | 2 | 8.91 | Dennis Dixon | 4375220550950 | Sat17 |
157 rows × 11 columns
Multiple Conditions¶
Recall the steps:
- Get the conditions
- Wrap each condition in parenthesis
- Use the | or & operator, depending if you want an
- OR | (either condition is True)
- AND & (both conditions must be True)
- You can also use the ~ operator as a NOT operation
In [33]:
df[(df['total_bill'] > 30) & (df['sex']=='Male')]
Out[33]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
39 | 31.27 | 5.00 | Male | No | Sat | Dinner | 3 | 10.42 | Mr. Brandon Berry | 6011525851069856 | Sat6373 |
44 | 30.40 | 5.60 | Male | No | Sun | Dinner | 4 | 7.60 | Todd Cooper | 503846761263 | Sun2274 |
47 | 32.40 | 6.00 | Male | No | Sun | Dinner | 4 | 8.10 | James Barnes | 3552002592874186 | Sun9677 |
56 | 38.01 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.50 | James Christensen DDS | 349793629453226 | Sat8903 |
59 | 48.27 | 6.73 | Male | No | Sat | Dinner | 4 | 12.07 | Brian Ortiz | 6596453823950595 | Sat8139 |
83 | 32.68 | 5.00 | Male | Yes | Thur | Lunch | 2 | 16.34 | Daniel Murphy | 5356177501009133 | Thur8801 |
95 | 40.17 | 4.73 | Male | Yes | Fri | Dinner | 4 | 10.04 | Aaron Bentley | 180026611638690 | Fri9628 |
112 | 38.07 | 4.00 | Male | No | Sun | Dinner | 3 | 12.69 | Jeff Lopez | 3572865915176463 | Sun591 |
141 | 34.30 | 6.70 | Male | No | Thur | Lunch | 6 | 5.72 | Steven Carlson | 3526515703718508 | Thur1025 |
142 | 41.19 | 5.00 | Male | No | Thur | Lunch | 5 | 8.24 | Eric Andrews | 4356531761046453 | Thur3621 |
156 | 48.17 | 5.00 | Male | No | Sun | Dinner | 6 | 8.03 | Ryan Gonzales | 3523151482063321 | Sun7518 |
167 | 31.71 | 4.50 | Male | No | Sun | Dinner | 4 | 7.93 | Michael Lawson | 3566285921227119 | Sun3719 |
170 | 50.81 | 10.00 | Male | Yes | Sat | Dinner | 3 | 16.94 | Gregory Clark | 5473850968388236 | Sat1954 |
173 | 31.85 | 3.18 | Male | Yes | Sun | Dinner | 2 | 15.92 | Scott Perez | 3577115550328507 | Sun9335 |
175 | 32.90 | 3.11 | Male | Yes | Sun | Dinner | 2 | 16.45 | Nathan Reynolds | 370307040837149 | Sun5109 |
179 | 34.63 | 3.55 | Male | Yes | Sun | Dinner | 2 | 17.32 | Brian Bailey | 346656312114848 | Sun9851 |
180 | 34.65 | 3.68 | Male | Yes | Sun | Dinner | 4 | 8.66 | James Hebert DDS | 676168737648 | Sun7544 |
182 | 45.35 | 3.50 | Male | Yes | Sun | Dinner | 3 | 15.12 | Jose Parsons | 4112207559459910 | Sun2337 |
184 | 40.55 | 3.00 | Male | Yes | Sun | Dinner | 2 | 20.27 | Stephen Cox | 3547798222044029 | Sun5140 |
187 | 30.46 | 2.00 | Male | Yes | Sun | Dinner | 5 | 6.09 | David Barrett | 4792882899700988 | Sun9987 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
In [34]:
df[(df['total_bill'] > 30) & ~(df['sex']=='Male')]
Out[34]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
52 | 34.81 | 5.20 | Female | No | Sun | Dinner | 4 | 8.70 | Emily Daniel | 4291280793094374 | Sun6165 |
85 | 34.83 | 5.17 | Female | No | Thur | Lunch | 4 | 8.71 | Shawna Cook | 6011787464177340 | Thur7972 |
102 | 44.30 | 2.50 | Female | Yes | Sat | Dinner | 3 | 14.77 | Heather Cohen | 379771118886604 | Sat6240 |
197 | 43.11 | 5.00 | Female | Yes | Thur | Lunch | 4 | 10.78 | Brooke Soto | 5544902205760175 | Thur9313 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
In [35]:
df[(df['total_bill'] > 30) & (df['sex']!='Male')]
Out[35]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
52 | 34.81 | 5.20 | Female | No | Sun | Dinner | 4 | 8.70 | Emily Daniel | 4291280793094374 | Sun6165 |
85 | 34.83 | 5.17 | Female | No | Thur | Lunch | 4 | 8.71 | Shawna Cook | 6011787464177340 | Thur7972 |
102 | 44.30 | 2.50 | Female | Yes | Sat | Dinner | 3 | 14.77 | Heather Cohen | 379771118886604 | Sat6240 |
197 | 43.11 | 5.00 | Female | Yes | Thur | Lunch | 4 | 10.78 | Brooke Soto | 5544902205760175 | Thur9313 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
In [30]:
# The Weekend
df[(df['day'] =='Sun') | (df['day']=='Sat')]
Out[30]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 | 8.49 | Christy Cunningham | 3560325168603410 | Sun2959 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 | 3.45 | Douglas Tucker | 4478071379779230 | Sun4608 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 | 7.00 | Travis Walters | 6011812112971322 | Sun4458 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 | 11.84 | Nathaniel Harris | 4676137647685994 | Sun5260 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 | 6.15 | Tonya Carter | 4832732618637221 | Sun2251 |
5 | 25.29 | 4.71 | Male | No | Sun | Dinner | 4 | 6.32 | Erik Smith | 213140353657882 | Sun9679 |
6 | 8.77 | 2.00 | Male | No | Sun | Dinner | 2 | 4.38 | Kristopher Johnson | 2223727524230344 | Sun5985 |
7 | 26.88 | 3.12 | Male | No | Sun | Dinner | 4 | 6.72 | Robert Buck | 3514785077705092 | Sun8157 |
8 | 15.04 | 1.96 | Male | No | Sun | Dinner | 2 | 7.52 | Joseph Mcdonald | 3522866365840377 | Sun6820 |
9 | 14.78 | 3.23 | Male | No | Sun | Dinner | 2 | 7.39 | Jerome Abbott | 3532124519049786 | Sun3775 |
10 | 10.27 | 1.71 | Male | No | Sun | Dinner | 2 | 5.14 | William Riley | 566287581219 | Sun2546 |
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
12 | 15.42 | 1.57 | Male | No | Sun | Dinner | 2 | 7.71 | Chad Harrington | 577040572932 | Sun1300 |
13 | 18.43 | 3.00 | Male | No | Sun | Dinner | 4 | 4.61 | Joshua Jones | 6011163105616890 | Sun2971 |
14 | 14.83 | 3.02 | Female | No | Sun | Dinner | 2 | 7.42 | Vanessa Jones | 30016702287574 | Sun3848 |
15 | 21.58 | 3.92 | Male | No | Sun | Dinner | 2 | 10.79 | Matthew Reilly | 180073029785069 | Sun1878 |
16 | 10.33 | 1.67 | Female | No | Sun | Dinner | 3 | 3.44 | Elizabeth Foster | 4240025044626033 | Sun9715 |
17 | 16.29 | 3.71 | Male | No | Sun | Dinner | 3 | 5.43 | John Pittman | 6521340257218708 | Sun2998 |
18 | 16.97 | 3.50 | Female | No | Sun | Dinner | 3 | 5.66 | Laura Martinez | 30422275171379 | Sun2789 |
19 | 20.65 | 3.35 | Male | No | Sat | Dinner | 3 | 6.88 | Timothy Oneal | 6568069240986485 | Sat9213 |
20 | 17.92 | 4.08 | Male | No | Sat | Dinner | 2 | 8.96 | Thomas Rice | 4403296224639756 | Sat1709 |
21 | 20.29 | 2.75 | Female | No | Sat | Dinner | 2 | 10.14 | Natalie Gardner | 5448125351489749 | Sat9618 |
22 | 15.77 | 2.23 | Female | No | Sat | Dinner | 2 | 7.88 | Ashley Shelton | 3524119516293213 | Sat9786 |
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
24 | 19.82 | 3.18 | Male | No | Sat | Dinner | 2 | 9.91 | Christopher Ross | 36739148167928 | Sat6236 |
25 | 17.81 | 2.34 | Male | No | Sat | Dinner | 4 | 4.45 | Robert Perkins | 30502930499388 | Sat907 |
26 | 13.37 | 2.00 | Male | No | Sat | Dinner | 2 | 6.68 | Kyle Avery | 6531339539615499 | Sat6651 |
27 | 12.69 | 2.00 | Male | No | Sat | Dinner | 2 | 6.34 | Patrick Barber | 30155551880343 | Sat394 |
28 | 21.70 | 4.30 | Male | No | Sat | Dinner | 2 | 10.85 | David Collier | 5529694315416009 | Sat3697 |
29 | 19.65 | 3.00 | Female | No | Sat | Dinner | 2 | 9.82 | Melinda Murphy | 5489272944576051 | Sat2467 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
206 | 26.59 | 3.41 | Male | Yes | Sat | Dinner | 3 | 8.86 | Daniel Owens | 38971087967574 | Sat1 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
208 | 24.27 | 2.03 | Male | Yes | Sat | Dinner | 2 | 12.14 | Jason Carter | 4268942915626180 | Sat6048 |
209 | 12.76 | 2.23 | Female | Yes | Sat | Dinner | 2 | 6.38 | Sarah Cunningham | 341876516331163 | Sat1274 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
211 | 25.89 | 5.16 | Male | Yes | Sat | Dinner | 4 | 6.47 | Christopher Li | 6011962464150569 | Sat6735 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
213 | 13.27 | 2.50 | Female | Yes | Sat | Dinner | 2 | 6.64 | Robin Andersen | 580140531089 | Sat1374 |
214 | 28.17 | 6.50 | Female | Yes | Sat | Dinner | 3 | 9.39 | Marissa Jackson | 4922302538691962 | Sat3374 |
215 | 12.90 | 1.10 | Female | Yes | Sat | Dinner | 2 | 6.45 | Jessica Owen | 4726904879471 | Sat6983 |
216 | 28.15 | 3.00 | Male | Yes | Sat | Dinner | 5 | 5.63 | Shawn Barnett PhD | 4590982568244 | Sat7320 |
217 | 11.59 | 1.50 | Male | Yes | Sat | Dinner | 2 | 5.80 | Gary Orr | 30324521283406 | Sat8489 |
218 | 7.74 | 1.44 | Male | Yes | Sat | Dinner | 2 | 3.87 | Nicholas Archer | 340517153733524 | Sat4772 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
227 | 20.45 | 3.00 | Male | No | Sat | Dinner | 4 | 5.11 | Robert Bradley | 213141668145910 | Sat4319 |
228 | 13.28 | 2.72 | Male | No | Sat | Dinner | 2 | 6.64 | Glenn Jones | 502061651712 | Sat2937 |
229 | 22.12 | 2.88 | Female | Yes | Sat | Dinner | 2 | 11.06 | Jennifer Russell | 4793003293608 | Sat3943 |
230 | 24.01 | 2.00 | Male | Yes | Sat | Dinner | 4 | 6.00 | Michael Osborne | 4258682154026 | Sat7872 |
231 | 15.69 | 3.00 | Male | Yes | Sat | Dinner | 3 | 5.23 | Jason Parks | 4812333796161 | Sat6334 |
232 | 11.61 | 3.39 | Male | No | Sat | Dinner | 2 | 5.80 | James Taylor | 6011482917327995 | Sat2124 |
233 | 10.77 | 1.47 | Male | No | Sat | Dinner | 2 | 5.38 | Paul Novak | 6011698897610858 | Sat1467 |
234 | 15.53 | 3.00 | Male | Yes | Sat | Dinner | 2 | 7.76 | Tracy Douglas | 4097938155941930 | Sat7220 |
235 | 10.07 | 1.25 | Male | No | Sat | Dinner | 2 | 5.04 | Sean Gonzalez | 3534021246117605 | Sat4615 |
236 | 12.60 | 1.00 | Male | Yes | Sat | Dinner | 2 | 6.30 | Matthew Myers | 3543676378973965 | Sat5032 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
239 | 29.03 | 5.92 | Male | No | Sat | Dinner | 3 | 9.68 | Michael Avila | 5296068606052842 | Sat2657 |
240 | 27.18 | 2.00 | Female | Yes | Sat | Dinner | 2 | 13.59 | Monica Sanders | 3506806155565404 | Sat1766 |
241 | 22.67 | 2.00 | Male | Yes | Sat | Dinner | 2 | 11.34 | Keith Wong | 6011891618747196 | Sat3880 |
242 | 17.82 | 1.75 | Male | No | Sat | Dinner | 2 | 8.91 | Dennis Dixon | 4375220550950 | Sat17 |
163 rows × 11 columns
Conditional Operator isin()¶
We can use .isin() operator to filter by a list of options.
In [36]:
options = ['Sat','Sun']
df['day'].isin(options)
Out[36]:
0 True 1 True 2 True 3 True 4 True 5 True 6 True 7 True 8 True 9 True 10 True 11 True 12 True 13 True 14 True 15 True 16 True 17 True 18 True 19 True 20 True 21 True 22 True 23 True 24 True 25 True 26 True 27 True 28 True 29 True ... 214 True 215 True 216 True 217 True 218 True 219 True 220 False 221 False 222 False 223 False 224 False 225 False 226 False 227 True 228 True 229 True 230 True 231 True 232 True 233 True 234 True 235 True 236 True 237 True 238 True 239 True 240 True 241 True 242 True 243 False Name: day, Length: 244, dtype: bool
In [37]:
df[df['day'].isin(['Sat','Sun'])]
Out[37]:
total_bill | tip | sex | smoker | day | time | size | price_per_person | Payer Name | CC Number | Payment ID | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 | 8.49 | Christy Cunningham | 3560325168603410 | Sun2959 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 | 3.45 | Douglas Tucker | 4478071379779230 | Sun4608 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 | 7.00 | Travis Walters | 6011812112971322 | Sun4458 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 | 11.84 | Nathaniel Harris | 4676137647685994 | Sun5260 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 | 6.15 | Tonya Carter | 4832732618637221 | Sun2251 |
5 | 25.29 | 4.71 | Male | No | Sun | Dinner | 4 | 6.32 | Erik Smith | 213140353657882 | Sun9679 |
6 | 8.77 | 2.00 | Male | No | Sun | Dinner | 2 | 4.38 | Kristopher Johnson | 2223727524230344 | Sun5985 |
7 | 26.88 | 3.12 | Male | No | Sun | Dinner | 4 | 6.72 | Robert Buck | 3514785077705092 | Sun8157 |
8 | 15.04 | 1.96 | Male | No | Sun | Dinner | 2 | 7.52 | Joseph Mcdonald | 3522866365840377 | Sun6820 |
9 | 14.78 | 3.23 | Male | No | Sun | Dinner | 2 | 7.39 | Jerome Abbott | 3532124519049786 | Sun3775 |
10 | 10.27 | 1.71 | Male | No | Sun | Dinner | 2 | 5.14 | William Riley | 566287581219 | Sun2546 |
11 | 35.26 | 5.00 | Female | No | Sun | Dinner | 4 | 8.82 | Diane Macias | 4577817359320969 | Sun6686 |
12 | 15.42 | 1.57 | Male | No | Sun | Dinner | 2 | 7.71 | Chad Harrington | 577040572932 | Sun1300 |
13 | 18.43 | 3.00 | Male | No | Sun | Dinner | 4 | 4.61 | Joshua Jones | 6011163105616890 | Sun2971 |
14 | 14.83 | 3.02 | Female | No | Sun | Dinner | 2 | 7.42 | Vanessa Jones | 30016702287574 | Sun3848 |
15 | 21.58 | 3.92 | Male | No | Sun | Dinner | 2 | 10.79 | Matthew Reilly | 180073029785069 | Sun1878 |
16 | 10.33 | 1.67 | Female | No | Sun | Dinner | 3 | 3.44 | Elizabeth Foster | 4240025044626033 | Sun9715 |
17 | 16.29 | 3.71 | Male | No | Sun | Dinner | 3 | 5.43 | John Pittman | 6521340257218708 | Sun2998 |
18 | 16.97 | 3.50 | Female | No | Sun | Dinner | 3 | 5.66 | Laura Martinez | 30422275171379 | Sun2789 |
19 | 20.65 | 3.35 | Male | No | Sat | Dinner | 3 | 6.88 | Timothy Oneal | 6568069240986485 | Sat9213 |
20 | 17.92 | 4.08 | Male | No | Sat | Dinner | 2 | 8.96 | Thomas Rice | 4403296224639756 | Sat1709 |
21 | 20.29 | 2.75 | Female | No | Sat | Dinner | 2 | 10.14 | Natalie Gardner | 5448125351489749 | Sat9618 |
22 | 15.77 | 2.23 | Female | No | Sat | Dinner | 2 | 7.88 | Ashley Shelton | 3524119516293213 | Sat9786 |
23 | 39.42 | 7.58 | Male | No | Sat | Dinner | 4 | 9.86 | Lance Peterson | 3542584061609808 | Sat239 |
24 | 19.82 | 3.18 | Male | No | Sat | Dinner | 2 | 9.91 | Christopher Ross | 36739148167928 | Sat6236 |
25 | 17.81 | 2.34 | Male | No | Sat | Dinner | 4 | 4.45 | Robert Perkins | 30502930499388 | Sat907 |
26 | 13.37 | 2.00 | Male | No | Sat | Dinner | 2 | 6.68 | Kyle Avery | 6531339539615499 | Sat6651 |
27 | 12.69 | 2.00 | Male | No | Sat | Dinner | 2 | 6.34 | Patrick Barber | 30155551880343 | Sat394 |
28 | 21.70 | 4.30 | Male | No | Sat | Dinner | 2 | 10.85 | David Collier | 5529694315416009 | Sat3697 |
29 | 19.65 | 3.00 | Female | No | Sat | Dinner | 2 | 9.82 | Melinda Murphy | 5489272944576051 | Sat2467 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
206 | 26.59 | 3.41 | Male | Yes | Sat | Dinner | 3 | 8.86 | Daniel Owens | 38971087967574 | Sat1 |
207 | 38.73 | 3.00 | Male | Yes | Sat | Dinner | 4 | 9.68 | Ricky Ramirez | 347817964484033 | Sat4505 |
208 | 24.27 | 2.03 | Male | Yes | Sat | Dinner | 2 | 12.14 | Jason Carter | 4268942915626180 | Sat6048 |
209 | 12.76 | 2.23 | Female | Yes | Sat | Dinner | 2 | 6.38 | Sarah Cunningham | 341876516331163 | Sat1274 |
210 | 30.06 | 2.00 | Male | Yes | Sat | Dinner | 3 | 10.02 | Shawn Mendoza | 30184049218122 | Sat8361 |
211 | 25.89 | 5.16 | Male | Yes | Sat | Dinner | 4 | 6.47 | Christopher Li | 6011962464150569 | Sat6735 |
212 | 48.33 | 9.00 | Male | No | Sat | Dinner | 4 | 12.08 | Alex Williamson | 676218815212 | Sat4590 |
213 | 13.27 | 2.50 | Female | Yes | Sat | Dinner | 2 | 6.64 | Robin Andersen | 580140531089 | Sat1374 |
214 | 28.17 | 6.50 | Female | Yes | Sat | Dinner | 3 | 9.39 | Marissa Jackson | 4922302538691962 | Sat3374 |
215 | 12.90 | 1.10 | Female | Yes | Sat | Dinner | 2 | 6.45 | Jessica Owen | 4726904879471 | Sat6983 |
216 | 28.15 | 3.00 | Male | Yes | Sat | Dinner | 5 | 5.63 | Shawn Barnett PhD | 4590982568244 | Sat7320 |
217 | 11.59 | 1.50 | Male | Yes | Sat | Dinner | 2 | 5.80 | Gary Orr | 30324521283406 | Sat8489 |
218 | 7.74 | 1.44 | Male | Yes | Sat | Dinner | 2 | 3.87 | Nicholas Archer | 340517153733524 | Sat4772 |
219 | 30.14 | 3.09 | Female | Yes | Sat | Dinner | 4 | 7.54 | Shelby House | 502097403252 | Sat8863 |
227 | 20.45 | 3.00 | Male | No | Sat | Dinner | 4 | 5.11 | Robert Bradley | 213141668145910 | Sat4319 |
228 | 13.28 | 2.72 | Male | No | Sat | Dinner | 2 | 6.64 | Glenn Jones | 502061651712 | Sat2937 |
229 | 22.12 | 2.88 | Female | Yes | Sat | Dinner | 2 | 11.06 | Jennifer Russell | 4793003293608 | Sat3943 |
230 | 24.01 | 2.00 | Male | Yes | Sat | Dinner | 4 | 6.00 | Michael Osborne | 4258682154026 | Sat7872 |
231 | 15.69 | 3.00 | Male | Yes | Sat | Dinner | 3 | 5.23 | Jason Parks | 4812333796161 | Sat6334 |
232 | 11.61 | 3.39 | Male | No | Sat | Dinner | 2 | 5.80 | James Taylor | 6011482917327995 | Sat2124 |
233 | 10.77 | 1.47 | Male | No | Sat | Dinner | 2 | 5.38 | Paul Novak | 6011698897610858 | Sat1467 |
234 | 15.53 | 3.00 | Male | Yes | Sat | Dinner | 2 | 7.76 | Tracy Douglas | 4097938155941930 | Sat7220 |
235 | 10.07 | 1.25 | Male | No | Sat | Dinner | 2 | 5.04 | Sean Gonzalez | 3534021246117605 | Sat4615 |
236 | 12.60 | 1.00 | Male | Yes | Sat | Dinner | 2 | 6.30 | Matthew Myers | 3543676378973965 | Sat5032 |
237 | 32.83 | 1.17 | Male | Yes | Sat | Dinner | 2 | 16.42 | Thomas Brown | 4284722681265508 | Sat2929 |
238 | 35.83 | 4.67 | Female | No | Sat | Dinner | 3 | 11.94 | Kimberly Crane | 676184013727 | Sat9777 |
239 | 29.03 | 5.92 | Male | No | Sat | Dinner | 3 | 9.68 | Michael Avila | 5296068606052842 | Sat2657 |
240 | 27.18 | 2.00 | Female | Yes | Sat | Dinner | 2 | 13.59 | Monica Sanders | 3506806155565404 | Sat1766 |
241 | 22.67 | 2.00 | Male | Yes | Sat | Dinner | 2 | 11.34 | Keith Wong | 6011891618747196 | Sat3880 |
242 | 17.82 | 1.75 | Male | No | Sat | Dinner | 2 | 8.91 | Dennis Dixon | 4375220550950 | Sat17 |
163 rows × 11 columns
In [ ]: